A straight forward method to find the real solutions:
(2^x-4)^3+(4^x-2)^3=(4^x+2^x-6)^3 \\ $ Let $a\equiv 2^x-4, $ and $b\equiv 4^x-2 \\ \therefore a^3+b^3=(a+b)^3 \\ (a+b)(a^2-ab+b^2)=(a+b)^3 \\ (a+b)(a^2-ab+b^2-a^2-2ab-b^2)=0 \\ -3ab(a+b)=0 \\ \Rightarrow a=0, b=0, a=-b \\ $The first two...