Re: HSC 2017 MX2 Integration Marathon
\text{Define }<f,g>=\int_0^1 f(s)g(s)ds\text{ and }<f,g>_w=\int_0^1 f(t)g(t)w(t)dt\text{. Find }\frac{<f,g>_w}{<f,g>}\text{ when}\\f(x)=x^{a-1},g(y)=(1-y)^{b-1}\text{ and }w(z)=(z+k)^{-a-b}\text{ for positive real constants a,b and k.}