3.
\frac{1- \cos x}{\sin x} = \frac{2 \sin^2 \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} = \tan \frac{x}{2}
Beware that:
1- \cos x = (\sin \frac{x}{2})^2 + (\cos \frac{x}{2})^2 - \left((\cos \frac{x}{2})^2 - (\sin \frac{x}{2})^2 \right ) = 2(\sin \frac{x}{2})^2
and
1- \cos 2x = 2...