nealos said:
sorry to bother again
how do u
intergrate:
(16-x^2) over x^2
using the substitution x=4sinθ
thanks
btw its from cambride 5.3 q8 or 9
x = 4sinθ
dx = 4cosθ dθ
.: ∫4cosθ sqrt(16 - 16sin²θ)dθ/16sin²θ
= ∫4cosθ sqrt(16 (1 - sin²θ))dθ/16sin²θ
= ∫4cosθ sqrt(16cos²θ)dθ/16sin²θ
= ∫4cosθ.4cosθ dθ/16sin²θ
= ∫cos²θ dθ/sin²θ
= ∫cot²θ dθ
= ∫(cosec²θ - 1) dθ
*= - cot θ - θ + c
Now, x = 4sinθ
.: sinθ = x/4
From right-angled triangle it can be deduced that:
tan θ = x/sqrt(16 - x²)
i.e. cot θ = sqrt(16 - x²)/x
Also, x = 4sinθ
.: sinθ = x/4
.: θ = sin<sup>-1</sup>(x/4)
Hence from *
- cot θ - θ + c = - sqrt(16 - x²)/x - sin<sup>-1</sup>(x/4) + c
I think it's right, please check my working........