• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

any suggestions about how to approach this question on continuous pdf? (1 Viewer)

Fizsi

New Member
Joined
Aug 29, 2014
Messages
3
Gender
Female
HSC
N/A
A piecewise function f(x) is defined as follows

f(x)=-x+a ,x<0
f(x)= 1/x+a, x greater or equal to 0
What value or values of a make the function continous?
 

cossine

Well-Known Member
Joined
Jul 24, 2020
Messages
655
Gender
Male
HSC
2017
lim x->0^+ (1/x + a) = infinity

lim x-> 0^- (-x+a) = a

Therefore there is no value of "a" that makes the function continuous as the left and right one-sided limits are different.
 

CM_Tutor

Moderator
Moderator
Joined
Mar 11, 2004
Messages
2,640
Gender
Male
HSC
N/A
I think that @Fizsi means the piece of the function for to be



rather than



because, as @cossine has noted, this second interpretation leads to no solution being possible.


Assuming the first interpretation, for , we have



and for , we have



For to be continuous, the branches must meet and the limits must be the same, and thus:

.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top