Okay, Assuming you know implicit differentiation,
x/2 + 2ydy/dx = 0
2ydy/dx=-x/2
dy/dx=-x/4y
At P, dy/dx =-2cosθ/4sinθ=-cosθ/2sinθ
At Q, dy/dx = 2sinθ/4cosθ = sinθ/2cosθ
Hence, the tangent at P has eqn y - sinθ = -(cosθ/2sinθ)(x-2cosθ)
2ysinθ - 2sin^2(θ) = -xcosθ + 2cos^2(θ)
xcosθ +2ysinθ = 2(sin^2(θ) + cos^2(θ))
xcosθ + 2ysinθ = 2 (1)
The tangent at Q has eqn y - cosθ = (sinθ/2cosθ)(x + 2sinθ)
2ycosθ - 2cos^2(θ) = xsinθ + 2sin^2(θ)
2ycosθ - xsinθ = 2(sin^2(θ) + cos^2(θ))
2ycosθ - xsinθ = 2 (2)
Now, to solve them, we first eliminate the x terms.
(1) x sinθ: 2ysin^2(θ) + xcosθsinθ = 2sinθ (3)
(2) x cosθ: 2ycos^2(θ) - xcosθsinθ = 2cosθ (4)
(3) + (4): 2y=2(sinθ + cosθ)
y = sinθ + cosθ (5)
Doing the same thing to eliminate the y term,
x/2 = (cosθ - sinθ) (6)
Now for the step alot of people dont see:
(5)^2 + (6)^2: (sinθ + cosθ)^2 + (cosθ - sinθ)^2 = (x^2)4 + y^2
(x^2)/4 + y^2 = sin^2(θ) + 2sinθcosθ + cos^2(θ) + cos^2(θ) -2sinθcosθ + sin^2(θ)
(x^2)/4 + y^2 = 2(sin^2(θ) + cos^2(θ))
(x^2)/4 + y^2 = 2
(x^2)/8 + (y^2)/2 = 1
hence the locus of R is an ellipse.