• Best of luck to the class of 2025 for their HSC exams. You got this!
    Let us know your thoughts on the HSC exams here

Finding Polynomial (1 Viewer)

Mahan1

Member
Joined
Oct 16, 2016
Messages
87
Gender
Male
HSC
2014
Suppose is a polynomial which satisfies the following condition:



find a possible polynomial, P(x), that satisfies the above condition.
 

Kingom

Member
Joined
Apr 25, 2015
Messages
48
Gender
Male
HSC
2019
solve

<a href="http://www.codecogs.com/eqnedit.php?latex=27{&space;x&space;}^{&space;6&space;}-27{&space;x&space;}^{&space;4&space;}&plus;6{&space;x&space;}^{&space;2&space;}&plus;2=\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;^{&space;3&space;}&plus;a\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;^{&space;2&space;}&plus;b\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;&plus;c" target="_blank"><img src="http://latex.codecogs.com/gif.latex?27{&space;x&space;}^{&space;6&space;}-27{&space;x&space;}^{&space;4&space;}&plus;6{&space;x&space;}^{&space;2&space;}&plus;2=\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;^{&space;3&space;}&plus;a\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;^{&space;2&space;}&plus;b\left(&space;3x^{&space;2&space;}&plus;2ax&plus;b&space;\right)&space;&plus;c" title="27{ x }^{ 6 }-27{ x }^{ 4 }+6{ x }^{ 2 }+2=\left( 3x^{ 2 }+2ax+b \right) ^{ 3 }+a\left( 3x^{ 2 }+2ax+b \right) ^{ 2 }+b\left( 3x^{ 2 }+2ax+b \right) +c" /></a>

for P(x)=x^3+ax^2+bx+c
by inspection or otherwise, one can deduce that a=0, b=-1, c=2 suffices the equation
therefore P(x)=x^3-x+2
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top