Could someone please help me with these? Thanks
Suppose that a>0, b>0, c>0
(a) Prove that a^2+b^2 >= 2ab
(b) Hence, or otherwise prove that a^2+b^2+c^2 >=ab+bc+ca
(c) Given a^3+b^3+c^2=(a+b+c)(a^2+b^2+c^2-ab-bc-ca), prove that a^3+b^3+c^3>=3abc
Thanks
Suppose that a>0, b>0, c>0
(a) Prove that a^2+b^2 >= 2ab
(b) Hence, or otherwise prove that a^2+b^2+c^2 >=ab+bc+ca
(c) Given a^3+b^3+c^2=(a+b+c)(a^2+b^2+c^2-ab-bc-ca), prove that a^3+b^3+c^3>=3abc
Thanks