\text {To prove that }(x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq \frac{25}{2}\\\text {Proven earlier that } xy\leq \frac{1}{4} \text { and given that }x+y=1\\\text {So, }x(1-x)\leq \frac{1}{4}\Rightarrow x+\frac{1}{x}\geq 4-3x \text { after some manipulation}\\\therefore (x+\frac{1}{x})^2\geq (4-3x)^2=16-24x+9x^2\\\text {Similarly, } (y+\frac{1}{y})^2\geq (4-3y)^2=16-24y+9y^2\\\therefore (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\\\geq (16+16)-24(x+y)+9(x^2+y^2)\\=32-24+9((x+y)^2-2xy)\\=8+9(1-2xy)\\\text {But } xy\leq \frac{1}{4} \Rightarrow 1-2xy\geq \frac{1}{2}\\\therefore (x+\frac{1}{x})^2+(y+\frac{1}{y})^2\geq 8+9(1-\frac{1}{2})=\frac{25}{2} anyone got a faster way of doing this... only 3 marks