Its not too bad, but does take a little thinking:
Let: int (pi/2 -> 0) (e^x).(cosx) dx = I
by parts: u=(e^x) v'= (cosx)
u'=(e^x) v= (sinx)
that is I = [(e^x)(sinx)] from (pi/2 -> 0) - int (pi/2 -> 0) (e^x).(sinx) dx.......(1)
now, consider int (pi/2 -> 0) (e^x).(sinx) dx
by parts: u=(e^x) v'=(sinx)
u'=(e^x) v=(-cosx)
that is, int (pi/2 -> 0) (e^x).(sinx) dx = [(e^x)(-cosx)] from (pi/2 -> 0) - int (pi/2 -> 0) (e^x).(-cosx) dx
= [(e^x)(-cosx)] from (pi/2 -> 0) + int (pi/2 -> 0) (e^x).(cosx) dx
but, we defined 'int (pi/2 -> 0) (e^x).(cosx) dx' to equal I
= [(e^x)(-cosx)] from (pi/2 -> 0) + I
sub this bak into (1):
I = [(e^x)(sinx)] from (pi/2 -> 0) - int (pi/2 -> 0) (e^x).(sinx) dx.......(1)
I = [(e^x)(sinx)] from (pi/2 -> 0) - {[(e^x)(-cosx)] from (pi/2 -> 0) + I}
= [(e^x)(sinx)] from (pi/2 -> 0) + [(e^x)(cosx)] from (pi/2 -> 0) - I
TAke the I to the other side, ie:
2I = [(e^x)(sinx)] from (pi/2 -> 0) + [(e^x)(cosx)] from (pi/2 -> 0)
= (e^(pi/2)) - 1
that is,
I = {e^(pi/2) - 1}/2
Gotta watch all the negative and positive signs in this integration, easy to make a silly mistake
NB, square brakets indicate the integral has been found, but needs to be evaluated between the 2 limits