Consider ∫π/2π √(1 + sin x) dx
Let u = x - π/2
du = dx
x = π, u = π/2
x = π/2, u = 0
∫π/2π √(1 + sin x) dx = ∫0π/2 √(1 + sin (u + π/2)) du
But using properties of definite integrals recall that
∫0a f(x) dx = ∫0a f(a - x) dx
.: ∫0π/2 √(1 + sin (u + π/2)) du = ∫0π/2 √(1 + sin (π/2 - u + π/2)) du
= ∫0π/2 √(1 + sin (π - u)) du
= ∫0π/2 √(1 + sin u) du
= ∫0π/2 √(1 + sin x) dx
as u is a dummy variable
Hence: ∫π/2π √(1 + sin x) dx = ∫0π/2 √(1 + sin x) dx
Now ∫0π √(1 + sin x) dx = ∫0π/2 √(1 + sin x) dx + ∫π/2π √(1 + sin x) dx
= 2∫0π/2 √(1 + sin x) dx
.: 0.5∫0π √(1 + sin x) dx = ∫0π/2 √(1 + sin x) dx