• Want to level up your HSC prep on those harder Maths questions?
    Register now for the BoS Trials (7th October)!

Need help quick! (1 Viewer)

currysauce

Actuary in the making
Joined
Aug 31, 2004
Messages
576
Location
Sydney
Gender
Male
HSC
2005
I have questions i don't understand

Use the properties of modulus and argument of a complex number to deduce that

a) conj (z1z2) = conj (z1) times conj (z2)

b) conj ( 1 / z ) = 1 / (conj z)

c) conj ( z1 / z2 ) = (conj z1) / (conj z2)




2. Use the method of mathematical induction to prove that | z^n| = |z| ^n and arg(z^n) = n arg z for all postitive integers n.

AHHHH
 

VieTz_88

VieTz
Joined
Sep 26, 2004
Messages
21
Location
Sydney
Gender
Male
HSC
2005
Umm for 1 just let z1 = a+ib, z2= c+id
therefore, z1z2 = (a+ib)(c+id)
= ac-bd+i(ad+bc)
therefore, conj(z1z2) = ac-bd-i(ad+bc)
Also, conj(z1).conj(z2) = (a-ib)(c-id)
= ac+bd-i(ad+bc)
= conj(z1z2)
You do the same for (b) and (c) .... let z1 = a+ib, z2= c+id :uhhuh:
 

Slidey

But pieces of what?
Joined
Jun 12, 2004
Messages
6,585
Gender
Male
HSC
2005
I shall henceforth denote the conjugate of z as z_bar:

"a) conj (z1z2) = conj (z1) times conj (z2)

b) conj ( 1 / z ) = 1 / (conj z)

c) conj ( z1 / z2 ) = (conj z1) / (conj z2"

a:
Given (z<sub>1</sub>.z<sub>2</sub>)_bar
Want (z<sub>1</sub>)_bar * (z<sub>2</sub>)_bar
Such that (z<sub>1</sub>.z<sub>2</sub>)_bar = (z<sub>1</sub>)_bar * (z<sub>2</sub>)_bar
Let z<sub>1</sub>=x+iy, z<sub>2</sub>=a+ib

LHS = ([x+iy].[a+ib])_bar
([x+iy].[a+ib])_bar = (ax-by+[ay+bx].i)_bar
(ax-by+[ay+bx].i)_bar = ax-by-(ay+bx)i
RHS = (x-iy) * (a-ib) = ax-by-(ay+bx)i
LHS=RHS, Q.E.D.

b:
Given (1/z)_bar
Want 1/(z_bar)
Such that (1/z)_bar = 1/(z_bar)
Let z=x+iy

LHS = [1/(x+iy)]_bar = [(x-iy)/(x^2+y^2)]_bar = (x+iy)/(x^2+y^2)
RHS = 1/(x-iy) = (x+iy)/(x^2+y^2) = LHS
Q.E.D.

c:
Given (z<sub>1</sub>/z<sub>2</sub>)_bar
Want z<sub>1</sub>_bar/z<sub>2</sub>_bar
Such that (z<sub>1</sub>/z<sub>2</sub>)_bar = z<sub>1</sub>_bar/z<sub>2</sub>_bar
Let z<sub>1</sub>=x+iy, z<sub>2</sub>=a+ib

LHS = [(x+iy)/(a+ib)]_bar = [(x+iy)(a-ib)/(a^2+b^2)]_bar = (x-iy)(a+ib)/(a^2+b^2) {from proofs a and b}
RHS = (x-iy)/(a-ib) = (x-iy)(a+ib)/(a^2+b^2) = LHS
Q.E.D.
 

Slidey

But pieces of what?
Joined
Jun 12, 2004
Messages
6,585
Gender
Male
HSC
2005
2. Use the method of mathematical induction to prove that | z^n| = |z| ^n and arg(z^n) = n arg z for all postitive integers n.

I'll do both at once, OK?

We want that P(n)= z^n=r^n.cis(n@), where r=|z| and @=Arg(z), cis@=(cos@+isin@)

Now for n=1,
P(1)=z^1=r^1cis(1.@)=rcis@, which is true, so n=1 is true
Let n=k, assume it is true for for P(k):
z^k=r^k.cis(k.@)
We want that P(k+1) is true if P(k) is true:
P(k+1)=r^(k+1).cis([k+1].@)

Now, z=rcis@ (true), z^k=cis(k@) (assumed true).
z^k.z=(r^n.cis[n@])(rcis@)=r^n.r.cis(n@+@)
z^(k+1)=r^(k+1).cis([k+1]@)
Hence if it is true for P(k), it is true for P(k+1).
It is true for P(1), and hence for P(2), P(3) and so on.
So P(n)=z^n=r^n.cis(n@) is true for all n>=1.

Now from this, |z^n|=r^n, but r=|z|, so r=|z|^n=|z^n|
Also from this, arg(z^n)=n@, but @=arg(z), so arg(z^n) = n.arg(z)
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top