phoenix159
Member
- Joined
- May 19, 2013
- Messages
- 79
- Gender
- Male
- HSC
- 2014
cos6x + sin6x = 1/4 (1 + 3 cos2 2x)
Let cos (x) = c and sin (x) = s
LHS = c6 + s6
= (c2 + s2)(c2 - c4s4 + s2)
= 1 X (c2 - c4s4 + s2)
= c2 - c4s4 + s2
sin2x = 1 - cos2x
LHS = (c2 - c4[1 - c4] + [1 - c2])
= c2 - c4 + c8 + 1 - c2
= c8 - c4 + 1
RHS = 1/4 (1 + 3 cos2 2x)
cos 2x = cos2x - sin2x = cos2x - (1 - cos2x) = 2cos2x - 1
RHS = 1/4 (1 + 3 cos22x)
= 1/4 (1 + 3 [2 cos2x - 1]2)
= 1/4 (1 + 3 [2 cos2x - 1]2)
= 1/4 (1 + 3 [2 c - 1]2)
= 1/4 (1 + 3 [4 c2 - 4 c + 1])
= 1/4 (1 + 12 c2 - 12 c + 3)
= 1/4 (4 + 12 c2 - 12 c)
= 3 c2 - 4c + 1
Let cos (x) = c and sin (x) = s
LHS = c6 + s6
= (c2 + s2)(c2 - c4s4 + s2)
= 1 X (c2 - c4s4 + s2)
= c2 - c4s4 + s2
sin2x = 1 - cos2x
LHS = (c2 - c4[1 - c4] + [1 - c2])
= c2 - c4 + c8 + 1 - c2
= c8 - c4 + 1
RHS = 1/4 (1 + 3 cos2 2x)
cos 2x = cos2x - sin2x = cos2x - (1 - cos2x) = 2cos2x - 1
RHS = 1/4 (1 + 3 cos22x)
= 1/4 (1 + 3 [2 cos2x - 1]2)
= 1/4 (1 + 3 [2 cos2x - 1]2)
= 1/4 (1 + 3 [2 c - 1]2)
= 1/4 (1 + 3 [4 c2 - 4 c + 1])
= 1/4 (1 + 12 c2 - 12 c + 3)
= 1/4 (4 + 12 c2 - 12 c)
= 3 c2 - 4c + 1
Last edited: