a)
z^2=r^2.e^2i@
Times by (1-i) which is sqrt2.e^(-i.pi/4)
To get:
(1-i).z^2=sqrt2.r^2.e^(i[2@-pi/4])
Mod of both sides:
|(1-i).z^2|=sqrt.r^2
Why? Because be definition, z=re^(i@), |z|=r.
b) From above,
(1-i).z^2=sqrt2.r^2.e^(i[2@-pi/4])
Again by definition:
Arg((1-i).z^2)=2@-pi/4
Similarly, for c and d:
(1+i.sqrt3)/z=2.e^(i.pi/3)/[r.e^(i@)]=2e^(i[pi/3-@])/r
Now take the mod and arg of both sides.