Hmm probably repeating what you know, I don't know better methods
I sqrt(x^2 - 8x) dx
= I sqrt[ (x-4)^2 - 16 ] dx
since you don't want to do it by parts we have hyperbolic substitution,
definitions cosh(t)= [e^x + e^(-x)]/2 , sinh(t)= [e^x - e^(-x)]/2
let (x-4) = 4cosh(t), dx = 4sinh(t) dt
above integral
= I sqrt( 16cosh(t)^2 - 16 ) * 4sinh(t) dt
= I sqrt( 16sinh(t)^2 ) * 4sinh(t) dt
= I 16sinh(t)^2 dt
= 8 I [cosh(2t) - 1] dt
= 8[ (sin(2t)/2) - t] + C
= 8[ sinh(t)cosh(t) - t] + C
now because (x-4) = 4cosh(t)
sinh(t) = sqrt( cosh(t)^2 - 1) = sqrt( ((x-4)^2 / 16) - 1)
t = arccosh[(x-4)/4] = ln { (x - 4)/4 + sqrt[ (x-4)^2 / 16 - 1] }
so the original integral
= 8 * [ (1/4)(x-4)sqrt( ((x-4)^2 / 16) - 1) +ln { (x - 4)/4 + sqrt[ (x-4)^2 / 16 - 1] } ] + C
OR
the usual sec subsitution:
let x-4 = 4sec(t) , then dx = 4sec(t)tan(t) dt
= I sqrt[ 16sec(t)^2 - 16 ] * 4sec(t)tan(t) dt
= I 4tan(t) * 4sec(t)tan(t) dt
= I 16sec(t)tan(t)^2 dt
hmm still by parts.. which is not good..
if K = I sec(t)tan(t)^2 dt
then
K = sec(t)tan(t) - I sec(t)^3 dx
K = sec(t)tant(t) - I sec(t)tan(t)^2 dx - I sec(t) dx
K = sec(t)tant(t) - K - ln {sec(x) + tan(x)} + C
K = 0.5 *[ sec(t)tan(t) - ln{ sec(x) + tan(x) } ] + C
so the original integral
= 8 * [ sec(t)tan(t) - ln{ sec(x) + tan(x) } ]+ C
by (x-4) = 4sec(t), tan(t) = sqrt[ (x-4)^2 / 16 - 1]
substitute,
= 8 * [ (1/4)(x-4)sqrt[ (x-4)^2 / 16 - 1] - ln { (x - 4)/4 + sqrt[ (x-4)^2 / 16 - 1] } ] + C
Hmm.. about the same..