sqrt(3) * COSX - SINX = 1
The good method, as mentioned earlier by wogboy:
[sqrt(3) / 2]*cos(x) - [1/2]*sin(x) = 1/2
cos(Pi/6)cos(x) - sin(Pi/6)sin(x) = 1/2
Cos(Pi/6 + x) = 1/2
Pi/6 + x = 2n(Pi) + Pi/3 OR 2n(Pi) - Pi/3
x = 2n(Pi) + Pi/6 OR 2n(Pi) - Pi/2
The Stupid method, if you forgot about the above method:
[1 + sin(x) ] = sqrt(3)*cos(x)
[1 - sin(x) ] = 2 - sqrt(3)*cos(x)
1- [sin(x)]^2 = 2*sqrt(3)*cos(x) - 3[cos(x)]^2
[cos(x)]^2 = 2*sqrt(3)*cos(x) - 3[cos(x)]^2
[cos(x)]^2 -[sqrt(3) / 2]*cos(x) = 0
cos(x)[cos(x) - sqrt(3)/2] = 0
cos(x) = 0 => x = ..., -Pi/2, Pi/2, 3Pi/2, 5Pi/2 ...
cos(x) = sqrt(3)/2 => x=... -Pi/6 , Pi/6, 13Pi/6, 23Pi/6 ...
now testing the solutions in the original equation, eliminating the extra solutions generated by the quadratic:
the solutions are {x| x=-Pi/2 + 2n(Pi) } U {x| x= Pi/6 + 2n(Pi)}