CriminalCrab
Member
- Joined
- Mar 14, 2011
- Messages
- 32
- Gender
- Undisclosed
- HSC
- 2012
Given that (n-1)Sigma(K=0) cos(K.theta) + i(n-1)Sigma(k=0) sin(K.theta) = (1-z^n)/(1-z).
1) Prove that:
(n-1)sigma(k=0) cos(K.theta) = (sin((n.theta)/2)cos(((n-1)theta)/s)) / (sin(theta/2)
and (n-1)sigma(k=0) sin(K.theta) = (sin((n.theta)/2)sin(((n-1)theta)/s)) / (sin(theta/2)
2)hence deduce that:
(n/2)sigma(k=1) sin (2Ktheta) + 2 (2n-1)sigma(j=3) sin (j.theta)
= (sin^2((n.theta)/2))sin[(n-1)theta])/(sin^2(theta/2))
sorry if its hard to read (i dont know how to make it look like math format)
note: the brackets before "sigma" is above it while the brackets after it is below the sigma sign.
1) Prove that:
(n-1)sigma(k=0) cos(K.theta) = (sin((n.theta)/2)cos(((n-1)theta)/s)) / (sin(theta/2)
and (n-1)sigma(k=0) sin(K.theta) = (sin((n.theta)/2)sin(((n-1)theta)/s)) / (sin(theta/2)
2)hence deduce that:
(n/2)sigma(k=1) sin (2Ktheta) + 2 (2n-1)sigma(j=3) sin (j.theta)
= (sin^2((n.theta)/2))sin[(n-1)theta])/(sin^2(theta/2))
sorry if its hard to read (i dont know how to make it look like math format)
note: the brackets before "sigma" is above it while the brackets after it is below the sigma sign.