Hi,
I recently read some stuff about induction conclusing statements and I am still confused as to which is the 'correct' way.
One of the teachers at my school (very good teacher too if I may add, he certainly isn't that one who'd 'blindly' teach from a textbook) reckons it should be something like "It is true for n=1, so it is true for n=1+1=2. It is true for n=2, so it is true for n=2+1=3 and so on for all positive integral values of n"
I mentioned the stuff I in the 2005 Ext 2 ER that all you need to write is somethihng like "Hence it is true for all n>=1, by induction" and that at university that is the preferred method (I read that somewhere here).
He said that in Ext 2 that may be the case because getting to that step is hard enough, but in Ext 1 he still reckons that I should go with his method. He also said that at university (some 30-40 years ago) he did it that way and got through...
So, any opinions?
I recently read some stuff about induction conclusing statements and I am still confused as to which is the 'correct' way.
One of the teachers at my school (very good teacher too if I may add, he certainly isn't that one who'd 'blindly' teach from a textbook) reckons it should be something like "It is true for n=1, so it is true for n=1+1=2. It is true for n=2, so it is true for n=2+1=3 and so on for all positive integral values of n"
I mentioned the stuff I in the 2005 Ext 2 ER that all you need to write is somethihng like "Hence it is true for all n>=1, by induction" and that at university that is the preferred method (I read that somewhere here).
He said that in Ext 2 that may be the case because getting to that step is hard enough, but in Ext 1 he still reckons that I should go with his method. He also said that at university (some 30-40 years ago) he did it that way and got through...
So, any opinions?