how do you integrate 5^x? (1 Viewer)

m.jakaran

Member
Joined
Oct 4, 2008
Messages
111
Gender
Male
HSC
2010
You know how to integrate e^kx, so write 5^x in this form. i.e. e^(ln(5)x).
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{100} \int 5^{x} dx = \int e^{\5lnx } dx = \frac{1}{\ln 5}e^{\5lnx }@plus;\textup{C} \\\\ \frac{1}{\ln 5}e^{\5lnx } @plus; \textup{C} = \frac{1}{\ln 5}5^{x} @plus; \textup{C}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{100} \int 5^{x} dx = \int e^{\5lnx } dx = \frac{1}{\ln 5}e^{\5lnx }+\textup{C} \\\\ \frac{1}{\ln 5}e^{\5lnx } + \textup{C} = \frac{1}{\ln 5}5^{x} + \textup{C}" title="\dpi{100} \int 5^{x} dx = \int e^{\5lnx } dx = \frac{1}{\ln 5}e^{\5lnx }+\textup{C} \\\\ \frac{1}{\ln 5}e^{\5lnx } + \textup{C} = \frac{1}{\ln 5}5^{x} + \textup{C}" /></a>
 

Timske

Sequential
Joined
Nov 23, 2011
Messages
794
Gender
Male
HSC
2012
Uni Grad
2016
<a href="http://www.codecogs.com/eqnedit.php?latex=\dpi{100} \int e^{ax@plus;b} dx = \frac{1}{a}e^{ax@plus;b} @plus; C\\\\ \frac{d}{dx}~ e^{ax@plus;b} = ae^{ax@plus;b} \\\\ \therefore \frac{d}{dx}~ e^{ln5x} = ln5*e^{ln5x} = ln5*5^{x}" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\dpi{100} \int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C\\\\ \frac{d}{dx}~ e^{ax+b} = ae^{ax+b} \\\\ \therefore \frac{d}{dx}~ e^{ln5x} = ln5*e^{ln5x} = ln5*5^{x}" title="\dpi{100} \int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C\\\\ \frac{d}{dx}~ e^{ax+b} = ae^{ax+b} \\\\ \therefore \frac{d}{dx}~ e^{ln5x} = ln5*e^{ln5x} = ln5*5^{x}" /></a>
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top