i) To find the coordinates of
A, equate the equation of the line and the parabola. So at
A (where
![](https://latex.codecogs.com/png.latex?\bg_white x \neq 4 )
),
![](https://latex.codecogs.com/png.latex?\bg_white x-4 = x^2 - 4x )
, i.e.
![](https://latex.codecogs.com/png.latex?\bg_white x^2 - 5x + 4 =0 \Leftrightarrow (x-1)(x-4)=0)
.
Since
![](https://latex.codecogs.com/png.latex?\bg_white x \neq 4 )
at
A, we can divide through by
![](https://latex.codecogs.com/png.latex?\bg_white (x- 4) )
, to get
![](https://latex.codecogs.com/png.latex?\bg_white x-1=0\Leftrightarrow x = 1)
.
To find the
y-value of
A, sub. in
x = 1 into the equation of the line. So
![](https://latex.codecogs.com/png.latex?\bg_white y = 1-4 = -3 )
. So
A = (1, -3).
ii) Shaded area is given by this integral:
![](https://latex.codecogs.com/png.latex?\bg_white \text{Area} = \int _1 ^4 ((x-4)-(x^2 - 4x))\text{ d}x)
.