Limits Q (Uni) (1 Viewer)

mreditor16

Well-Known Member
Joined
Apr 4, 2014
Messages
3,169
Gender
Male
HSC
2014
Hi,

I just wanted to confirm my answer for this Q (and if I'm wrong, explain how I'm wrong).

This is the Q



I got a) exists b) 3 c) not too sure

So some help please :)
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,109
Gender
Male
HSC
N/A
Hi,

I just wanted to confirm my answer for this Q (and if I'm wrong, explain how I'm wrong).

This is the Q



I got a) exists b) 3 c) not too sure

So some help please :)
It exists, limit is 3, reason: by epsilon-delta definition of limit.
 

mreditor16

Well-Known Member
Joined
Apr 4, 2014
Messages
3,169
Gender
Male
HSC
2014
It exists, limit is 3, reason: by epsilon-delta definition of limit.
LOL that's my logic. but I'm not too sure about whether I need a better explanation. is that more than enough?
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,109
Gender
Male
HSC
N/A
LOL that's my logic. but I'm not too sure about whether I need a better explanation. is that more than enough?
Not sure. You could say "we are given that, for any , whenever x is within units of 1, is within units of 3, hence by the ε-δ definition of the limit, the limit is 3".
 

photastic

Well-Known Member
Joined
Feb 11, 2013
Messages
1,848
Gender
Male
HSC
2014
|f(x) - 3| < ε , ε > 0

1 - ε/2 < x < 1+ ε/2 (This is what the brackets mean)
- ε/2 < x - 1 < ε/2
|x - 1| < ε/2
Take δ = ε/2 given ε > 0
Blah blah
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top