• Want to take part in this year's BoS Trials event for Maths?
    Click here for details and register now!

Double Angle Identities (1 Viewer)

Arucerious

New Member
Joined
May 10, 2015
Messages
24
Gender
Male
HSC
2016
I have an upcoming 3U test on trig and I'm not too sure which of the 3 cos2x expansions to use and when.
e.g cos2x = cos^2x - sin^2x, 1-2sin^2x, 2cos^2x - 1

Can someone explain in what situation would I use one expansion over the other?

Example question: 1+cos(180degree + 2x)
How come to simplify this question I was told to use the (1-2sin^x) expansion but not the others?
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
Example question: 1+cos(180degree + 2x)
You can just simplify that by using that (this can be seen by translating the graph of , just observing the graph, or using an "ASTC" diagram.)
 

PhysicsMaths

Active Member
Joined
Dec 9, 2014
Messages
179
Gender
Male
HSC
2015
Well let's see
1+cos(180+2x)
= 1+cos180cos2x-sin180sin2x
= 1-cos2x
= 1-(1-2sin^2x)
= 2sin^2x

The reason why you used this variant was to remove the 1
 

Crisium

Pew Pew
Joined
Feb 17, 2014
Messages
2,006
Location
Australia
Gender
Male
HSC
2015
Use the form based on what the question is asking

1) If it is a prove question then look at the right hand side which will usually give you a hint as to what version of it you will have to apply.

2) If it is a simplification question then use the form that will be most convenient when expanding brackets and simplifying.

3) When integrating something like sin^2x, you're going to have to change it to a form where it can be integrated and so you will have to rearrange the identity cos2x = 1 - 2sin^2x into 0.5(1 - cos2x) and sub it in.
 

Crisium

Pew Pew
Joined
Feb 17, 2014
Messages
2,006
Location
Australia
Gender
Male
HSC
2015
Well let's see
1+cos(180+2x)
= 1+cos180cos2x-sin180sin2x
= 1-cos2x
= 1-(1-2sin^2x)
= 2sin^2x

The reason why you used this variant was to remove the 1
Alternatively as integrand state cos(180 + x) = -cosx <-- This is because the cosine function is negative in the third quadrant

1 + cos(180 + 2x)

= 1 + (-cos2x) < --- Using what I stated above

= 1 - cos2x

= 1 - (1 - 2sin^2x) OR = 1 - (2cos^2x - 1) OR = 1 - (cos^2x - sin^2x)

= 1 - 1+ 2sin^2x = 1 - 2cos^2x + 1 = 1 - cos^2x + sin^2x

= 2sin^2x = 2-2cos^2x = sin^2x + sin^2x

= 2(1 - cos^2x) = 2sin^2x

= 2sin^2x

There are heaps of other ways to do these questions but its best to use the one that will give the you the simplest answer
 
Last edited:

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
Alternatively as integrand state cos(180 + x) = -cosx <-- This is because the cosine function is negative in the third quadrant

1 + cos(180 + 2x)

= 1 + (-cos2x) < --- Using what I stated above

= 1 - cos2x

= 1 - (1 - 2sin^2x) OR = 1 - (2cos^2x + 1) OR = 1 - (cos^2x - sin^2x)

= 1 - 1+ 2sin^2x = 1 - 2cos^2x - 1 = 1 - cos^2x + sin^2x

= 2sin^2x = -2cos^2x = sin^2x + sin^2x

= 2sin^2x

There are heaps of other ways to do these questions but its best to use the one that will give the you the simplest answer
(It should be 2cos2 x – 1 for the middle set, not 2cos2 x + 1.)
 
Last edited:

laters

Member
Joined
Jan 30, 2015
Messages
71
Gender
Undisclosed
HSC
N/A
A general guide:

You can rearrange the equations to get:



Most of the manipulations required will contain 1+cos2x and 1-cos2x and the identities above are almost always the required versions.

For you question you could do two things:
(1) Use the double angle immediately:

(2) Use the relation cos(180+x)=-cos(x):
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top