Paradoxica
-insert title here-
Re: HSC 2016 4U Marathon
![](https://latex.codecogs.com/png.latex?\bg_white $\noindent$ |\alpha|^2 = \alpha \bar{\alpha} = 1 \Rightarrow a = 1)
From completion of the square, we require it to be strictly a sum of two positive squares.
![](https://latex.codecogs.com/png.latex?\bg_white $\noindent$ 1-\frac{b^2}{4} > 0 \Leftrightarrow -2 < b < 2)
From the modulus of the roots, we have:
![](https://latex.codecogs.com/png.latex?\bg_white $\noindent$ |\alpha|^2 = \alpha \bar{\alpha} = \frac{1}{a} > 1 \Rightarrow 0<a<1)
Completing the square is more cumbersome so we resort to the discriminant.
![](https://latex.codecogs.com/png.latex?\bg_white $\noindent b^2 < 4a \Leftrightarrow -2\sqrt{a}<b<2\sqrt{a})
From the modulus of the roots, we have:
From completion of the square, we require it to be strictly a sum of two positive squares.
From the modulus of the roots, we have:
Completing the square is more cumbersome so we resort to the discriminant.
Last edited: