One possible solution:
Define
Note that these functions are inverses when
![](https://latex.codecogs.com/png.latex?\bg_white z \ne -1, 1 )
.
Let
![](https://latex.codecogs.com/png.latex?\bg_white w_n = \exp(i \cdot ((2n+1)\pi)/8) )
be the solutions to
![](https://latex.codecogs.com/png.latex?\bg_white w^8 = -1)
.
Now if
then we know that any solution
![](https://latex.codecogs.com/png.latex?\bg_white z )
satisfies
![](https://latex.codecogs.com/png.latex?\bg_white f(z) = w_n )
for some
![](https://latex.codecogs.com/png.latex?\bg_white n )
.
Apply
![](https://latex.codecogs.com/png.latex?\bg_white g )
to both sides, so we get
Because we have an explicit formula for
![](https://latex.codecogs.com/png.latex?\bg_white g )
we're now done, but we can use part i) to get a nicer form for the solutions.
From part i), we know that
![](https://latex.codecogs.com/png.latex?\bg_white g(z) = i \cot(\theta/2))
for any
![](https://latex.codecogs.com/png.latex?\bg_white z = \exp(i\theta) )
on the unit circle.
(Geometrically, this means that
![](https://latex.codecogs.com/png.latex?\bg_white g )
sends the unit circle to the imaginary axis. In other words, all our solutions will be purely imaginary.)
From here, we just need to evaluate
The co-tangent function has periodicity
![](https://latex.codecogs.com/png.latex?\bg_white \pi )
, so take
![](https://latex.codecogs.com/png.latex?\bg_white n = 0 ... 7 )
to obtain the full set of solutions.
Pedantic note: We show here that every solution
![](https://latex.codecogs.com/png.latex?\bg_white z )
corresponds to a
![](https://latex.codecogs.com/png.latex?\bg_white g(w_n) )
for some
![](https://latex.codecogs.com/png.latex?\bg_white n )
.
Technically, we should also explain why every
![](https://latex.codecogs.com/png.latex?\bg_white g(w_n) )
is a valid solution
![](https://latex.codecogs.com/png.latex?\bg_white z )
.
This is because there are exactly eight possible values each for
![](https://latex.codecogs.com/png.latex?\bg_white z )
and
![](https://latex.codecogs.com/png.latex?\bg_white w_n )
.
None of these values are
![](https://latex.codecogs.com/png.latex?\bg_white 1 )
or
![](https://latex.codecogs.com/png.latex?\bg_white -1 )
, so the function
![](https://latex.codecogs.com/png.latex?\bg_white f )
is a one-to-one mapping between these sets.
---
Fun fact:
![](https://latex.codecogs.com/png.latex?\bg_white f )
and
![](https://latex.codecogs.com/png.latex?\bg_white g )
are examples of Möbius transformations - transformations of the type
Such transformations in the complex plane send a line or circle to another line or circle.