kendricklamarlover101
Member
- Joined
- Oct 22, 2023
- Messages
- 76
- Gender
- Male
- HSC
- 2024
can someone check if my working is correct i got this integral from spivak's calculus
![](https://latex.codecogs.com/png.latex?\bg_white \int \frac{x^2 -1}{x^2 +1} \frac{1}{\sqrt{1+x^4}} \; dx \quad \text{Using } u^2 = x^2 + \frac{1}{x^2})
![](https://latex.codecogs.com/png.latex?\bg_white u^2 = x^2 + \frac{1}{x^2} \implies 2u \; du = \left(2x - \frac{2}{x^3}\right)dx)
![](https://latex.codecogs.com/png.latex?\bg_white u \; du = \left(x - \frac{1}{x^3}\right)dx)
![](https://latex.codecogs.com/png.latex?\bg_white = \frac{x^4-1}{x^3} \; dx = \frac{(x^2-1)(x^2+1)}{x^3} \; dx)
![](https://latex.codecogs.com/png.latex?\bg_white \implies dx = \frac{ux^3 \; du}{(x^2-1)(x^2+1)})
![](https://latex.codecogs.com/png.latex?\bg_white \int \frac{x^2 -1}{x^2 +1} \frac{1}{\sqrt{1+x^4}} \; dx = \int \frac{x^2 -1}{x^2 +1} \frac{1}{x\sqrt{x^2 + \frac{1}{x^2}}} \; dx)
![](https://latex.codecogs.com/png.latex?\bg_white =\int \frac{x^2 - 1}{x^2 + 1} \frac{1}{xu} \frac{ux^3 \; du}{(x^2-1)(x^2+1)} = \int \frac{x^2}{\left(x^2 +1\right)^2} \; du)
![](https://latex.codecogs.com/png.latex?\bg_white =\int \frac{x^2}{x^2 \left( x +\frac{1}{x} \right)^2} \; du = \int \frac{1}{u^2 + 2} \; du)
![](https://latex.codecogs.com/png.latex?\bg_white =\frac{1}{\sqrt{2}} \arctan \left( \frac{u}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \arctan \left( \frac{\sqrt{x^4+1}}{x\sqrt{2}} \right) + C)
also are there any alternative methods than this substitution?
also are there any alternative methods than this substitution?