ideally you should use the sin angle sum formula, that is sin(a+b) = sinacosb+sinbcosa.prove: sin3x-sinx = 2sinx-4sin³x
here's what I have so far:
LHS = 2cos3x+x/2 sin 3x-x/2
= 2cos2xsinx
RHS= 2sinx-4sin³x
= 2sinxcos2x
so LHS=RHS
but its wrong and idk why🥲
continue on w ur lhs. ur literally like 1 step away dudprove: sin3x-sinx = 2sinx-4sin³x
here's what I have so far:
LHS = 2cos3x+x/2 sin 3x-x/2
= 2cos2xsinx
RHS= 2sinx-4sin³x
= 2sinxcos2x
so LHS=RHS
but its wrong and idk why🥲
spoiler alertideally you should use the sin angle sum formula, that is sin(a+b) = sinacosb+sinbcosa.
then lhs = sin3x-sinx= sin(2x+x)-sinx = sin2xcosx+sinxcos2x-sinx
=2sinxcos^2x+sinx(1-2sin^2x)-sinx from double angle formulas
= 2sinx(1-sin^2x)-2sin^3x from pythagorean identity
=2sinx-4sin^3x=RHS
lhs= 2cos2xsinxprove: sin3x-sinx = 2sinx-4sin³x
here's what I have so far:
LHS = 2cos3x+x/2 sin 3x-x/2
= 2cos2xsinx
RHS= 2sinx-4sin³x
= 2sinxcos2x
so LHS=RHS
but its wrong and idk why🥲
I always realise after someone humbles me but appreciate it yocontinue on w ur lhs. ur literally like 1 step away dud
thank uuuuuuideally you should use the sin angle sum formula, that is sin(a+b) = sinacosb+sinbcosa.
then lhs = sin3x-sinx= sin(2x+x)-sinx = sin2xcosx+sinxcos2x-sinx
=2sinxcos^2x+sinx(1-2sin^2x)-sinx from double angle formulas
= 2sinx(1-sin^2x)-2sin^3x from pythagorean identity
=2sinx-4sin^3x=RHS