MedVision ad

complex sequence help (1 Viewer)

lqmoney

New Member
Joined
Mar 14, 2024
Messages
18
Gender
Male
HSC
2024
Screenshot 2024-07-13 161236.pngScreenshot 2024-07-13 161300.png
The question is from 2020 NSBHS 4U Trial. The first part was not difficult to get out, but I do not understand how to get ii. The second image is the answer I found in the same document on THSC, but I do not understand how they got from the second last to the last line, and I am not convinced the limit even exists?
 

WeiWeiMan

Well-Known Member
Joined
Aug 7, 2023
Messages
1,020
Location
behind you
Gender
Male
HSC
2026
View attachment 43653View attachment 43654
The question is from 2020 NSBHS 4U Trial. The first part was not difficult to get out, but I do not understand how to get ii. The second image is the answer I found in the same document on THSC, but I do not understand how they got from the second last to the last line, and I am not convinced the limit even exists?
i'm pretty sure it's wrong (I hope it's wrong at least)
 

liamkk112

Well-Known Member
Joined
Mar 26, 2022
Messages
1,051
Gender
Female
HSC
2023
View attachment 43653View attachment 43654
The question is from 2020 NSBHS 4U Trial. The first part was not difficult to get out, but I do not understand how to get ii. The second image is the answer I found in the same document on THSC, but I do not understand how they got from the second last to the last line, and I am not convinced the limit even exists?
yeah pretty sure the limit won’t exist, because of the i in the exponent it’s really a limit of cosines and sines (potentially it could converge to 1, but i really doubt it at first glance)
 

Dr Mathematics

New Member
Joined
Aug 4, 2024
Messages
1
Gender
Undisclosed
HSC
N/A
To evaluate the limit

lim⁡n→∞12+32e−2i(n+1)x12+32e−2inx,\lim_{n \to \infty} \frac{\frac{1}{2} + \frac{3}{2} e^{-2i(n+1)x}}{\frac{1}{2} + \frac{3}{2} e^{-2inx}},n→∞lim21+23e−2inx21+23e−2i(n+1)x,
we need to analyze the behavior of the numerator and the denominator as n→∞n \to \inftyn→∞.

First, let's rewrite the expression in a more convenient form:

12+32e−2i(n+1)x12+32e−2inx=12(1+3e−2i(n+1)x)12(1+3e−2inx)=1+3e−2i(n+1)x1+3e−2inx.\frac{\frac{1}{2} + \frac{3}{2} e^{-2i(n+1)x}}{\frac{1}{2} + \frac{3}{2} e^{-2inx}} = \frac{\frac{1}{2} (1 + 3 e^{-2i(n+1)x})}{\frac{1}{2} (1 + 3 e^{-2inx})} = \frac{1 + 3 e^{-2i(n+1)x}}{1 + 3 e^{-2inx}}.21+23e−2inx21+23e−2i(n+1)x=21(1+3e−2inx)21(1+3e−2i(n+1)x)=1+3e−2inx1+3e−2i(n+1)x.
As n→∞n \to \inftyn→∞, we need to consider the behavior of the exponential terms e−2i(n+1)xe^{-2i(n+1)x}e−2i(n+1)x and e−2inxe^{-2inx}e−2inx.

  1. The term e−2i(n+1)x=e−2inxe−2ixe^{-2i(n+1)x} = e^{-2inx} e^{-2ix}e−2i(n+1)x=e−2inxe−2ix. The term e−2inxe^{-2inx}e−2inx oscillates as n→∞n \to \inftyn→∞, but the factor e−2ixe^{-2ix}e−2ix remains constant for a given xxx.
  2. The term e−2inxe^{-2inx}e−2inx also oscillates as n∞n \inftyn∞.
Since both exponential terms oscillate with magnitudes that are always 1 (because they are complex exponentials with purely imaginary exponents), let's denote e−2ix=ze^{-2ix} = ze−2ix=z. Then we have:

e−2i(n+1)x=ze−2inxande−2inx=(e−2ix)n.e^{-2i(n+1)x} = z e^{-2inx} \quad \text{and} \quad e^{-2inx} = (e^{-2ix})^n.e−2i(n+1)x=ze−2inxande−2inx=(e−2ix)n.
Substituting these into our fraction, we get:

1+3ze−2inx1+3e−2inx.\frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}}.1+3e−2inx1+3ze−2inx.
Now, factor out e−2inxe^{-2inx}e−2inx from both the numerator and the denominator:

1+3ze−2inx1+3e−2inx=1+3z(e−2ix)n1+3(e−2ix)n.\frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}} = \frac{1 + 3 z (e^{-2ix})^n}{1 + 3 (e^{-2ix})^n}.1+3e−2inx1+3ze−2inx=1+3(e−2ix)n1+3z(e−2ix)n.
As n→∞n \to \inftyn→∞, the term (e−2ix)n(e^{-2ix})^n(e−2ix)n oscillates between -1 and 1, but if we consider the magnitude (which is always 1), we see that e−2ixe^{-2ix}e−2ix is a fixed complex number on the unit circle. If e−2ixe^{-2ix}e−2ix is not exactly equal to 1, then (e−2ix)n(e^{-2ix})^n(e−2ix)n will not converge to a single value, but will rather keep oscillating.

Let's assume that the exponential e−2ix≠1e^{-2ix} \neq 1e−2ix=1. Then:

lim⁡n→∞1+3ze−2inx1+3e−2inx.\lim_{n \to \infty} \frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}}.n→∞lim1+3e−2inx1+3ze−2inx.
Since both the numerator and the denominator involve terms that oscillate and their coefficients are constants, the dominant terms will eventually cancel each other out because they have the same coefficient 333:

lim⁡n→∞1+3ze−2inx1+3e−2inx=1+3⋅z⋅(something oscillating)1+3⋅(something oscillating)≈11.\lim_{n \to \infty} \frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}} = \frac{1 + 3 \cdot z \cdot (\text{something oscillating})}{1 + 3 \cdot (\text{something oscillating})} \approx \frac{1}{1}.n→∞lim1+3e−2inx1+3ze−2inx=1+3⋅(something oscillating)1+3⋅z⋅(something oscillating)≈11.
Therefore, we get:

lim⁡n→∞1+3e−2i(n+1)x1+3e−2inx=1+3⋅z⋅01+3⋅0=11=1.\lim_{n \to \infty} \frac{1 + 3 e^{-2i(n+1)x}}{1 + 3 e^{-2inx}} = \frac{1 + 3 \cdot z \cdot 0}{1 + 3 \cdot 0} = \frac{1}{1} = 1.n→∞lim1+3e−2inx1+3e−2i(n+1)x=1+3⋅01+3⋅z⋅0=11=1.
Thus, the limit is:

1
Therefore the answer is e^(ix)*1=e^(ix)
 

lqmoney

New Member
Joined
Mar 14, 2024
Messages
18
Gender
Male
HSC
2024
To evaluate the limit

lim⁡n→∞12+32e−2i(n+1)x12+32e−2inx,\lim_{n \to \infty} \frac{\frac{1}{2} + \frac{3}{2} e^{-2i(n+1)x}}{\frac{1}{2} + \frac{3}{2} e^{-2inx}},n→∞lim21+23e−2inx21+23e−2i(n+1)x,
we need to analyze the behavior of the numerator and the denominator as n→∞n \to \inftyn→∞.

First, let's rewrite the expression in a more convenient form:

12+32e−2i(n+1)x12+32e−2inx=12(1+3e−2i(n+1)x)12(1+3e−2inx)=1+3e−2i(n+1)x1+3e−2inx.\frac{\frac{1}{2} + \frac{3}{2} e^{-2i(n+1)x}}{\frac{1}{2} + \frac{3}{2} e^{-2inx}} = \frac{\frac{1}{2} (1 + 3 e^{-2i(n+1)x})}{\frac{1}{2} (1 + 3 e^{-2inx})} = \frac{1 + 3 e^{-2i(n+1)x}}{1 + 3 e^{-2inx}}.21+23e−2inx21+23e−2i(n+1)x=21(1+3e−2inx)21(1+3e−2i(n+1)x)=1+3e−2inx1+3e−2i(n+1)x.
As n→∞n \to \inftyn→∞, we need to consider the behavior of the exponential terms e−2i(n+1)xe^{-2i(n+1)x}e−2i(n+1)x and e−2inxe^{-2inx}e−2inx.

  1. The term e−2i(n+1)x=e−2inxe−2ixe^{-2i(n+1)x} = e^{-2inx} e^{-2ix}e−2i(n+1)x=e−2inxe−2ix. The term e−2inxe^{-2inx}e−2inx oscillates as n→∞n \to \inftyn→∞, but the factor e−2ixe^{-2ix}e−2ix remains constant for a given xxx.
  2. The term e−2inxe^{-2inx}e−2inx also oscillates as n∞n \inftyn∞.
Since both exponential terms oscillate with magnitudes that are always 1 (because they are complex exponentials with purely imaginary exponents), let's denote e−2ix=ze^{-2ix} = ze−2ix=z. Then we have:

e−2i(n+1)x=ze−2inxande−2inx=(e−2ix)n.e^{-2i(n+1)x} = z e^{-2inx} \quad \text{and} \quad e^{-2inx} = (e^{-2ix})^n.e−2i(n+1)x=ze−2inxande−2inx=(e−2ix)n.
Substituting these into our fraction, we get:

1+3ze−2inx1+3e−2inx.\frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}}.1+3e−2inx1+3ze−2inx.
Now, factor out e−2inxe^{-2inx}e−2inx from both the numerator and the denominator:

1+3ze−2inx1+3e−2inx=1+3z(e−2ix)n1+3(e−2ix)n.\frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}} = \frac{1 + 3 z (e^{-2ix})^n}{1 + 3 (e^{-2ix})^n}.1+3e−2inx1+3ze−2inx=1+3(e−2ix)n1+3z(e−2ix)n.
As n→∞n \to \inftyn→∞, the term (e−2ix)n(e^{-2ix})^n(e−2ix)n oscillates between -1 and 1, but if we consider the magnitude (which is always 1), we see that e−2ixe^{-2ix}e−2ix is a fixed complex number on the unit circle. If e−2ixe^{-2ix}e−2ix is not exactly equal to 1, then (e−2ix)n(e^{-2ix})^n(e−2ix)n will not converge to a single value, but will rather keep oscillating.

Let's assume that the exponential e−2ix≠1e^{-2ix} \neq 1e−2ix=1. Then:

lim⁡n→∞1+3ze−2inx1+3e−2inx.\lim_{n \to \infty} \frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}}.n→∞lim1+3e−2inx1+3ze−2inx.
Since both the numerator and the denominator involve terms that oscillate and their coefficients are constants, the dominant terms will eventually cancel each other out because they have the same coefficient 333:

lim⁡n→∞1+3ze−2inx1+3e−2inx=1+3⋅z⋅(something oscillating)1+3⋅(something oscillating)≈11.\lim_{n \to \infty} \frac{1 + 3 z e^{-2inx}}{1 + 3 e^{-2inx}} = \frac{1 + 3 \cdot z \cdot (\text{something oscillating})}{1 + 3 \cdot (\text{something oscillating})} \approx \frac{1}{1}.n→∞lim1+3e−2inx1+3ze−2inx=1+3⋅(something oscillating)1+3⋅z⋅(something oscillating)≈11.
Therefore, we get:

lim⁡n→∞1+3e−2i(n+1)x1+3e−2inx=1+3⋅z⋅01+3⋅0=11=1.\lim_{n \to \infty} \frac{1 + 3 e^{-2i(n+1)x}}{1 + 3 e^{-2inx}} = \frac{1 + 3 \cdot z \cdot 0}{1 + 3 \cdot 0} = \frac{1}{1} = 1.n→∞lim1+3e−2inx1+3e−2i(n+1)x=1+3⋅01+3⋅z⋅0=11=1.
Thus, the limit is:

1
Therefore the answer is e^(ix)*1=e^(ix)
Thanks for the proof but I can't understand it very well, is there a program which could convert this into latex?
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top