a = 1/10 + n
ar = 1/4 + n
ar^2 = 9/20 + n
n = a - (1/10)
ar - a = 3/20
r = (3/20 + a)/a
a[(3/20 + a)/a]^2 = 9/20 + a - 1/10
9/400 + 3a/10 + a^2 = 9a/20 + a^2 - a/10
9 + 120a = 180a - 40a
20a = 9
a = 9/20
n = 7/20
r = 4/3
So GP is 9/20, 12/20, 16/20
= 9/20, 3/5...