$Firstly, notice that $x\leq e^{x-1},$ via calculus, with equality iff x=1. Let A= arithmetic mean of $ a_1, a_2....a_k...a_n.$By letting $ x=a_k,$ we get that$ \frac{a_k}{A}\leq e^{\frac{a_k}{A}-1}. $So,$ \frac{a_1}{A}\frac{a_2}{A}.....\frac{a_n}{A}\leq...