Re: HSC 2015 4U Marathon
$ Let $ z=x+iy, $ then $ z-2=(x-2)+iy, z+2=(x+2)+iy. $ Taking tangent on both sides of $ {\rm arg}(z-2)+{\rm arg}(z+2)=\pi, \frac{\frac{y}{x-2}+\frac{y}{x+2}}{1-\frac{y}{x-2}\times\frac{y}{x+2}}=0, $ which is simplied to $ xy=0.
$ By inspection, the locus is the...