$ when $ |z|=2, x^2+y^2=|z|^2=4, $ sub. this into $ u $ and $ v, u=x-\frac{x}{4}=\frac{3}{4}x, v=y+\frac{y}{4}=\frac{5}{4}y. $ Now from these solve for $ x $ and $ y, x=\frac43u, y=\frac45v. $ therefore, $ \left(\frac43u\right)^2+\left(\frac45v\right)^2=4, $ so the locus is $...