Let x=\sin{u} \implies dx=\cos{u} du
\int x dx
=\int \sin{u} \cos{u} du
=\frac{1}{2}\int \sin{2u} du
=-\frac{1}{4} \cos{2u}+C where C is a constant
=-\frac{1}{4} (1-2\sin^2{x})+C
=-\frac{1}{4} (1-2x^2)+C
=-\frac{1}{4} +\frac{1}{2}x^2+C
=\frac{1}{2}x^2+C_1 where C_1 is another constant