hmmmmm ok ....
The trick to this question is to know that:
a^3 + b^3 + c^3 = (a+b+c)^3 - 3(a+b+c)(ab+bc+ca) + 3abc
Question:
If a+b+c=0, show that (2a-b)^3 + (2b-c)^3 + (2c-a)^3 = 3(2a-b)(2b-c)(2c-a)
Answer:
LHS = (2a-b)^3 + (2b-c)^3 + (2c-a)^3
= 7a^3 + 7b^3 + 7c^3 - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (after explanding and collecting like terms.
= 7(a^3 + b^3 + c^3) - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2
= 7[(a+b+c)^3 - 3(a+b+c)(ab+bc+ca) + 3abc] - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (using the above statement)
= 21abc - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (since a+b+c=0)
RHS = 3(2a-b)(2b-c)(2c-a)
= 3(2a-b)(4bc-2ab+ac+c^2)
= 3(7abc - 4ba^2 - 4ac^2 - 4cb^2 + 2ca^2 + 2ab^2 + 2bc^2)
= 21abc - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2
= LHS
I hope that's right :|
The trick to this question is to know that:
a^3 + b^3 + c^3 = (a+b+c)^3 - 3(a+b+c)(ab+bc+ca) + 3abc
Question:
If a+b+c=0, show that (2a-b)^3 + (2b-c)^3 + (2c-a)^3 = 3(2a-b)(2b-c)(2c-a)
Answer:
LHS = (2a-b)^3 + (2b-c)^3 + (2c-a)^3
= 7a^3 + 7b^3 + 7c^3 - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (after explanding and collecting like terms.
= 7(a^3 + b^3 + c^3) - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2
= 7[(a+b+c)^3 - 3(a+b+c)(ab+bc+ca) + 3abc] - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (using the above statement)
= 21abc - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2 (since a+b+c=0)
RHS = 3(2a-b)(2b-c)(2c-a)
= 3(2a-b)(4bc-2ab+ac+c^2)
= 3(7abc - 4ba^2 - 4ac^2 - 4cb^2 + 2ca^2 + 2ab^2 + 2bc^2)
= 21abc - 12ba^2 - 12cb^2 - 12ac^2 + 6ab^2 + 6bc^2 + 6ca^2
= LHS
I hope that's right :|