Yes, you can.
For part (ii), take
![](https://latex.codecogs.com/png.latex?\bg_white \alpha = 2 + i)
and
![](https://latex.codecogs.com/png.latex?\bg_white \beta = 3i)
.
We are given that
![](https://latex.codecogs.com/png.latex?\bg_white |z - \alpha| = 1)
and can calculate that
![](https://latex.codecogs.com/png.latex?\bg_white |\alpha - \beta| = |(2 + i) - 3i| = |2 - 2i| = \sqrt{2^2 + (-2)^2} = 2\sqrt{2})
.
We seek
![](https://latex.codecogs.com/png.latex?\bg_white |z - \beta|)
.
Applying the triangle inequality gives us that:
![](https://latex.codecogs.com/png.latex?\bg_white \begin{align*} |z - \alpha| + |\alpha - \beta| &\ge |(z - \alpha) + (\alpha - \beta)| \\ 1 + 2\sqrt{2} &\ge |z - \beta| \\ |z - \beta| &\le 1 + 2\sqrt{2} \end{align*})
And similarly, that:
![](https://latex.codecogs.com/png.latex?\bg_white \begin{align*} |z - \beta| + |\alpha - z| &\ge |(z - \beta) + (\alpha - z)| \\ |z - \beta| + 1 &\ge |\alpha - \beta| \qquad \text{as $|\alpha - z| = |-1(z - \alpha)| = |-1||z - \alpha| = 1 \times 1 = 1$} \\ |z - \beta| &\ge 2\sqrt{2} - 1 \end{align*})
Combining these:
![](https://latex.codecogs.com/png.latex?\bg_white 2\sqrt{2} - 1 \le |z - 3i| \le 1 + 2\sqrt{2})
Note, also, that the method generalises, to:
![](https://latex.codecogs.com/png.latex?\bg_white |\alpha - \beta| - |z - \alpha| \le |z - \beta| \le |\alpha - \beta| + |z - \alpha|)
is the result without any substitutions.
Applying it to part (i), we use:
![](https://latex.codecogs.com/png.latex?\bg_white \alpha = 2 + i \ \ \text{and} \ \ \beta = 0 \quad \implies \quad |\alpha - \beta| = |2 + i - 0| = \sqrt{2^2 + 1^2} = \sqrt{5})
and so, by substitution, we can confirm
@Drongoski's answer, that
![](https://latex.codecogs.com/png.latex?\bg_white \sqrt{5} - 1 \le |z| \le \sqrt{5} + 1)
We can also expand the method to a circle with any centre
![](https://latex.codecogs.com/png.latex?\bg_white \alpha)
and any other point on the Argand Diagram,
![](https://latex.codecogs.com/png.latex?\bg_white \beta)
. This can provide a quick check for analogous MX1 vector problems.
It can even be applied to cases like
![](https://latex.codecogs.com/png.latex?\bg_white \beta = 1 +i)
, which actually lies on the locus
![](https://latex.codecogs.com/png.latex?\bg_white |z - \alpha| = 1)
, as:
![](https://latex.codecogs.com/png.latex?\bg_white \alpha = 2 + i \ \ \text{and} \ \ \beta = 1 + i \quad \implies \quad |\alpha - \beta| = |2 + i - (1 + i)| = |1| = 1)
and so yields the (expected) result, that the distance must be between zero and the length of the diameter:
![](https://latex.codecogs.com/png.latex?\bg_white 1 - 1 \le |z - \beta| \le 1 + 1 \qquad \implies \qquad 0 \le |z - 1 - i| \le 2)