<img src="http://latex.codecogs.com/gif.latex?z^{5} = 1 = 1cis(0)" title="z^{5} = 1 = 1cis(0)" />
<img src="http://latex.codecogs.com/gif.latex?= 1cis(0+2k\pi )" title="= 1cis(0+2k\pi )" /> [because adding 2<img src="http://latex.codecogs.com/gif.latex?\pi" title="\pi" /> is just a full revolution i.e. "bringing you to the same spot" where k is an integer]
<img src="http://latex.codecogs.com/gif.latex?= cis(2k\pi )" title="= cis(2k\pi )" />
Using De Moivre's Thereom
<img src="http://latex.codecogs.com/gif.latex?z = cis(2k\pi )^{\frac{1}{5}}" title="z = cis(2k\pi )^{\frac{1}{5}}" />
<img src="http://latex.codecogs.com/gif.latex?= cis(\frac{2k\pi}{5} )" title="= cis(\frac{2k\pi}{5} )" /> where k = 1, 2, 3, 4 [that's where the n-1 comes in]
Therefore, the five fifth roots are:
<img src="http://latex.codecogs.com/gif.latex?1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{6\pi}{5}), cis(\frac{8\pi}{5})" title="1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{6\pi}{5}), cis(\frac{8\pi}{5})" /> or in principle argument form: <img src="http://latex.codecogs.com/gif.latex?1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{-4\pi}{5}), cis(\frac{-2\pi}{5})" title="1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{-4\pi}{5}), cis(\frac{-2\pi}{5})" />
<img src="http://latex.codecogs.com/gif.latex?z^{5} - 1 = (z-1)(z^{4}+z^{3}+z^{2}+ z + 1)" title="z^{5} - 1 = (z-1)(z^{4}+z^{3}+z^{2}+ z + 1)" /> where they represent the roots
<img src="http://latex.codecogs.com/gif.latex?=(z-1)(z-cis(\frac{2\pi}{5}))(z-cis(\frac{4\pi}{5}))(z-cis(\frac{-2\pi}{5}))(z-cis(\frac{-4\pi}{5}))" title="=(z-1)(z-cis(\frac{2\pi}{5}))(z-cis(\frac{4\pi}{5}))(z-cis(\frac{-2\pi}{5}))(z-cis(\frac{-4\pi}{5}))" />
<img src="http://latex.codecogs.com/gif.latex?= (z-1)(z^{2} - 2cos\frac{2\pi}{5}z + 1) (z^{2}-2cos\frac{4\pi}{5}+1)" title="= (z-1)(z^{2} - 2cos\frac{2\pi}{5}z + 1) (z^{2}-2cos\frac{4\pi}{5}+1)" /> [sorry, you're going to have to expand the step before, I didn't type out all my working but I'm sure you know what to do)
Hope this is clear to you.
Don't be afraid to ask questions on my working or anything like that.