complex numbers help! (1 Viewer)

viraj30

Member
Joined
Jun 28, 2011
Messages
182
Gender
Male
HSC
2012
the question is- (1) factorise z^5 -1 into real and quadratic factors?? it says (z-1)(1+z+...z^n-1) but i wanna know the steps that ended up with this expression!
 

pokka

d'ohnuts
Joined
Nov 4, 2011
Messages
312
Gender
Female
HSC
2011
is (z-1)(1+z+...z^n-1) meant to be a clue? not the answer?
 

viraj30

Member
Joined
Jun 28, 2011
Messages
182
Gender
Male
HSC
2012
ok ignore that! it's just factorise z^5 into real and quad factors
 

tohriffic

Member
Joined
Jul 22, 2011
Messages
35
Location
Under your bed.
Gender
Female
HSC
2012
<img src="http://latex.codecogs.com/gif.latex?z^{5} = 1 = 1cis(0)" title="z^{5} = 1 = 1cis(0)" />
<img src="http://latex.codecogs.com/gif.latex?= 1cis(0+2k\pi )" title="= 1cis(0+2k\pi )" /> [because adding 2<img src="http://latex.codecogs.com/gif.latex?\pi" title="\pi" /> is just a full revolution i.e. "bringing you to the same spot" where k is an integer]
<img src="http://latex.codecogs.com/gif.latex?= cis(2k\pi )" title="= cis(2k\pi )" />

Using De Moivre's Thereom
<img src="http://latex.codecogs.com/gif.latex?z = cis(2k\pi )^{\frac{1}{5}}" title="z = cis(2k\pi )^{\frac{1}{5}}" />
<img src="http://latex.codecogs.com/gif.latex?= cis(\frac{2k\pi}{5} )" title="= cis(\frac{2k\pi}{5} )" /> where k = 1, 2, 3, 4 [that's where the n-1 comes in]

Therefore, the five fifth roots are:
<img src="http://latex.codecogs.com/gif.latex?1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{6\pi}{5}), cis(\frac{8\pi}{5})" title="1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{6\pi}{5}), cis(\frac{8\pi}{5})" /> or in principle argument form: <img src="http://latex.codecogs.com/gif.latex?1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{-4\pi}{5}), cis(\frac{-2\pi}{5})" title="1, cis(\frac{2\pi}{5}), cis(\frac{4\pi}{5}), cis(\frac{-4\pi}{5}), cis(\frac{-2\pi}{5})" />

<img src="http://latex.codecogs.com/gif.latex?z^{5} - 1 = (z-1)(z^{4}+z^{3}+z^{2}+ z + 1)" title="z^{5} - 1 = (z-1)(z^{4}+z^{3}+z^{2}+ z + 1)" /> where they represent the roots
<img src="http://latex.codecogs.com/gif.latex?=(z-1)(z-cis(\frac{2\pi}{5}))(z-cis(\frac{4\pi}{5}))(z-cis(\frac{-2\pi}{5}))(z-cis(\frac{-4\pi}{5}))" title="=(z-1)(z-cis(\frac{2\pi}{5}))(z-cis(\frac{4\pi}{5}))(z-cis(\frac{-2\pi}{5}))(z-cis(\frac{-4\pi}{5}))" />
<img src="http://latex.codecogs.com/gif.latex?= (z-1)(z^{2} - 2cos\frac{2\pi}{5}z + 1) (z^{2}-2cos\frac{4\pi}{5}+1)" title="= (z-1)(z^{2} - 2cos\frac{2\pi}{5}z + 1) (z^{2}-2cos\frac{4\pi}{5}+1)" /> [sorry, you're going to have to expand the step before, I didn't type out all my working but I'm sure you know what to do)

Hope this is clear to you. :) Don't be afraid to ask questions on my working or anything like that.
 
Last edited:

tohriffic

Member
Joined
Jul 22, 2011
Messages
35
Location
Under your bed.
Gender
Female
HSC
2012
<img src="http://latex.codecogs.com/gif.latex?(z-cis\frac{2\pi}{5})(z-cis\frac{-2\pi}{5})" title="(z-cis\frac{2\pi}{5})(z-cis\frac{-2\pi}{5})" />
<img src="http://latex.codecogs.com/gif.latex?=(z-cos\frac{2\pi}{5}-isin\frac{2\pi}{5})(z-cos\frac{-2\pi}{5}-isin\frac{-2\pi}{5} )" title="=(z-cos\frac{2\pi}{5}-isin\frac{2\pi}{5})(z-cos\frac{-2\pi}{5}-isin\frac{-2\pi}{5} )" />
<img src="http://latex.codecogs.com/gif.latex?=(z-cos\frac{2\pi}{5}-isin\frac{2\pi}{5})(z-cos\frac{2\pi}{5}+isin\frac{2\pi}{5} )" title="=(z-cos\frac{2\pi}{5}-isin\frac{2\pi}{5})(z-cos\frac{2\pi}{5}+isin\frac{2\pi}{5} )" />
<img src="http://latex.codecogs.com/gif.latex?=z^{2}-cos\frac{2\pi}{5}z+zisin\frac{2\pi}{5}-cos\frac{2\pi}{5}z+cos^{2}\frac{2\pi}{5}-isin\frac{2\pi}{5}cos\frac{2\pi}{5}-isin\frac{2\pi}{5}z+isin\frac{2\pi}{5}cos\frac{2\pi}{5}+sin^{2}\frac{2\pi}{5}" title="=z^{2}-cos\frac{2\pi}{5}z+zisin\frac{2\pi}{5}-cos\frac{2\pi}{5}z+cos^{2}\frac{2\pi}{5}-isin\frac{2\pi}{5}cos\frac{2\pi}{5}-isin\frac{2\pi}{5}z+isin\frac{2\pi}{5}cos\frac{2\pi}{5}+sin^{2}\frac{2\pi}{5}" />
<img src="http://latex.codecogs.com/gif.latex?=z^{2}-2cos\frac{2\pi}{5}z+1" title="=z^{2}-2cos\frac{2\pi}{5}z+1" />

And similarly with the other one. Though there is probably a faster way but this is how I did it. :)
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top