(x + i)<sup>4</sup> = x<sup>4</sup> + 4x<sup>3</sup>i + 6x<sup>2</sup>i<sup>2</sup> + 4xi<sup>3</sup> + i<sup>4</sup> = x<sup>4</sup> + 4ix<sup>3</sup> - 6x<sup>2</sup> - 4ix + 1
Now, (x + i)<sup>4</sup> is purely imaginary, then its real part is zero. So, x<sup>4</sup> - 6x<sup>2</sup> + 1 = 0
x<sup>2</sup> = [6 +/- sqrt(36 - 4)] / 2 = 3 +/- 2 * sqrt(2), using the quadratic formula
So, there are four possible values for x, +/- sqrt(3 +/- 2 * sqrt(2))