Note, also, the working on the second page can be substantially simplified, in my opinion. Starting from
and then simplifying through the use of log laws and cancelling like terms, rather than extracting the telescoping series. Consider the summation term:
}}&=\sum_{n=2}^k{\ln{\left(\cfrac{1}{1-\frac{1}{n^2}}\times\cfrac{n^2}{n^2}\right)}}=\sum_{n=2}^k{\ln{\left[\frac{n^2}{(n+1)(n-1)}\right]}}\\&=\ln{\left(\frac{2^2}{3\times 1}\right)}+\ln{\left(\frac{3^2}{4\times 2}\right)}+\ln{\left(\frac{4^2}{3\times 5}\right)}+...+\ln{\left[\frac{(k-1)^2}{k(k-1)}\right]}+\ln{\left[\frac{k^2}{(k+1)(k-1)}\right]}\\&=\ln{\left[\frac{2^2\times 3^2\times 4^2\times ...\times (k-1)^2\times k^2}{1\times 2\times3^2\times 4^2\times 5^2\times ...\times (k - 1)^2\times k\times(k+1)}\right]}\quad\text{(log laws)}\\&=\ln{\left[\frac{2^2}{1\times 2}\times\frac{1}{1}\times\frac{k^2}{k(k+1)}\right]}\\&=\ln{\left(\frac{2k}{k+1}\right)}\\ \\ \text{And,}\qquad\lim_{k\to\infty}{\ln{\left(\frac{2k}{k+1}\right)}}&=\lim_{k\to\infty}{\ln{\left(\frac{2k}{k+1}\times\cfrac{\frac{1}{k}}{\frac{1}{k}}\right)}}=\lim_{k\to\infty}{\ln{\left(\cfrac{2}{1+\frac{1}{k}}\right)}}=\ln{2}\quad\text{as $\frac{1}{k}\to0$}\end{align*})
and then simplifying through the use of log laws and cancelling like terms, rather than extracting the telescoping series. Consider the summation term: