Part i) Vector P<sub>2</sub>P<sub>1</sub>=Vector P<sub>4</sub>P<sub>1</sub> rotated by (pi)/2
Therefore z<sub>2</sub> - z<sub>1</sub> = i(z<sub>4</sub> - z<sub>1</sub>)
Part ii) Therefore 1 + 5i - z<sub>1</sub> = i(5 + 3i - z<sub>1</sub>)
1 + 5i - z<sub>1</sub> = -3 + 5i - iz<sub>1</sub>
(-1 + i)z<sub>1</sub> = -4
z<sub>1</sub> = -4/(-1 + i)
(some steps in the middle)
= 2 + 2i
Also, P<sub>3</sub>P<sub>1</sub> = P<sub>2</sub>P<sub>1</sub> + P<sub>4</sub>P<sub>1</sub>
Therefore z<sub>3</sub> - z<sub>1</sub> = z<sub>2</sub> - z<sub>1</sub> + z<sub>4</sub>-z<sub>1</sub>
z<sub>3</sub> - (2 + 2i) = (1 + 5i) - (2 + 2i) + (5 + 3i) - (2 + 2i)
z<sub>3</sub>= (1 + 5i) + (5 + 3i) - (2 + 2i)
z<sub>3</sub> = 4 + 6i