You can determine the direction of eddy currents according to Lenz's law.
E.g. If a metal sheet is losing flux into the page, it will experience induced eddy currents in a clockwise direction to replace it.
However, this doesn't make sense to me logically. :S Consider a straight current-carrying wire. It has equal flux on either side of it's length. Now warp it into a circle (to simulate eddy currents). It should have equal flux on both outside and inside the the circle. Thus, in the above example, the eddy currents ARE NOT replacing the lost flux into the page, as it is also producing EQUAL flux out of the page (which "cancels" the other flux into the page).
E.g. If a metal sheet is losing flux into the page, it will experience induced eddy currents in a clockwise direction to replace it.
However, this doesn't make sense to me logically. :S Consider a straight current-carrying wire. It has equal flux on either side of it's length. Now warp it into a circle (to simulate eddy currents). It should have equal flux on both outside and inside the the circle. Thus, in the above example, the eddy currents ARE NOT replacing the lost flux into the page, as it is also producing EQUAL flux out of the page (which "cancels" the other flux into the page).