Re: MATH1231/1241/1251 SOS Thread
![](https://latex.codecogs.com/png.latex?\bg_white $\noindent For any $n\geq 2$, we have$)
![](https://latex.codecogs.com/png.latex?\bg_white $$\begin{align*}I_{n} &= \int _{0}^{\frac{\pi}{4}} \tan^{n}x \, \mathrm{d}x \\ &=\int _{0}^{\frac{\pi}{4}} \tan^{n-2}x \tan^2 x\, \mathrm{d}x \\ &= \int _{0}^{\frac{\pi}{4}} \tan^{n-2}x \left(\sec^2x -1\right)\, \mathrm{d}x \\ &= \int _{0}^{\frac{\pi}{4}} \tan^{n-2}x \sec^2 x \, \mathrm{d}x - \int _{0}^{\frac{\pi}{4}} \tan^{n-2}x \, \mathrm{d}x \\ &= \frac{1}{n-1} + I_{n-2} \quad (\text{use a substitution } u = \tan x\text{ for first integral if you don't want to do it by inspection}).\end{align*}$)
Could someone help me do this thanks, I'm keen to see the working out so I can get the general idea of things (I'm getting confused with what happens when you get down to the n limit).
![]()