\\$Define $f:\mathbb{R}\to \mathbb{R},f(x)=\frac{\sin 3x}{x^2+4}\\$Prove that $\lim_{x\to \infty }f(x)=0 $ using the formal definition of a limit.$\\\\\\$Suppose $\epsilon >0 $ and $x>0,\\|f(x)-L|=\left|\frac{\sin 3x}{x^2+4}\right|\leq \left|\frac{3}{x^2+4}\right|<\frac{3}{x^2}<\epsilon \Rightarrow x>\sqrt{\frac{3}{\epsilon }}\\$If $M=\sqrt{\frac{3}{\epsilon }},\\$Then $|f(x)-L|<\epsilon $ for $x>M\\\\$Q.E.D.$ is this correct in both terms of what i'm doing and its layout?