• Congratulations to the Class of 2024 on your results!
    Let us know how you went here
    Got a question about your uni preferences? Ask us here

General solution (1 Viewer)

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]sin(3θ) = 3sin(θ)cos<sup>2</sup>(θ) - sin<sup>3</sup>(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)cos<sup>2</sup>(θ) - sin<sup>3</sup>(θ) = 2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)[1-sin<sup>2</sup>(θ)] - [/FONT][FONT=Arial,Helvetica,sans-serif]sin<sup>3</sup>(θ) = [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) = 0

[/FONT][FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Work from there coz im lazy?

[/FONT]
 

lacklustre

Member
Joined
Jan 25, 2007
Messages
178
Gender
Undisclosed
HSC
2008
Tsylana said:
[FONT=Arial,Helvetica,sans-serif]sin(3θ) = 3sin(θ)cos<SUP>2</SUP>(θ) - sin<SUP>3</SUP>(θ)
[/FONT]
[FONT=Arial,Helvetica,sans-serif]How did you know this?
Tsylana said:
[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)cos<SUP>2</SUP>(θ) - sin<SUP>3</SUP>(θ) = 2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ)[1-sin<SUP>2</SUP>(θ)] - [/FONT][FONT=Arial,Helvetica,sans-serif]sin<SUP>3</SUP>(θ) = [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ)

[/FONT][FONT=Arial,Helvetica,sans-serif]3sin(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) - [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) = 0

[/FONT][FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Work from there coz im lazy?

[/FONT]
Hmm lol I'm not sure where to go from there.
 

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]4sin<sup>3</sup>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

4[sin^2
[/FONT][FONT=Arial,Helvetica,sans-serif](θ)sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0
4[1-cos
[/FONT][FONT=Arial,Helvetica,sans-serif]^2(θ)][[/FONT][FONT=Arial,Helvetica,sans-serif]sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Factorise out sin theta. Reduce it to a quadratic.

Ummm I learned the triple angle expansions off as a rule just to help me in the the exams... but meh.

Just expand Sin
[/FONT][FONT=Arial,Helvetica,sans-serif](2θ+[/FONT][FONT=Arial,Helvetica,sans-serif]θ[/FONT][FONT=Arial,Helvetica,sans-serif])... You should get what i wrote anyway...[/FONT][FONT=Arial,Helvetica,sans-serif][/FONT][FONT=Arial,Helvetica,sans-serif][/FONT]


ok i thought i'd get non-lazy and edit back in the squared signs... but then i pressed the edit button... and got lazy.
 

lacklustre

Member
Joined
Jan 25, 2007
Messages
178
Gender
Undisclosed
HSC
2008
Tsylana said:
[FONT=Arial,Helvetica,sans-serif]4sin<SUP>3</SUP>(θ) + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

4[sin^2
[/FONT][FONT=Arial,Helvetica,sans-serif](θ)sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0
4[1-cos
[/FONT][FONT=Arial,Helvetica,sans-serif]^2(θ)][[/FONT][FONT=Arial,Helvetica,sans-serif]sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)] + [/FONT][FONT=Arial,Helvetica,sans-serif]2Sin[/FONT][FONT=Arial,Helvetica,sans-serif](θ)[/FONT][FONT=Arial,Helvetica,sans-serif]cos(θ) [/FONT][FONT=Arial,Helvetica,sans-serif]- 3sin(θ) = 0

Factorise out sin theta. Reduce it to a quadratic.

Ummm I learned the triple angle expansions off as a rule just to help me in the the exams... but meh.

Just expand Sin
[/FONT][FONT=Arial,Helvetica,sans-serif](2θ+[/FONT][FONT=Arial,Helvetica,sans-serif]θ[/FONT][FONT=Arial,Helvetica,sans-serif])... You should get what i wrote anyway...[/FONT]


ok i thought i'd get non-lazy and edit back in the squared signs... but then i pressed the edit button... and got lazy.
Wow, thanks a lot. I'll get to work on it then.:p
 

Tsylana

Member
Joined
May 4, 2008
Messages
80
Gender
Male
HSC
2009
[FONT=Arial,Helvetica,sans-serif]Oh yeah, once you factorise out sin(θ) = 0 [/FONT]
[FONT=Arial,Helvetica,sans-serif]
Solve it as a general solution, then completely erase it from the equation to make it look more clean =].
[/FONT]
 
Last edited:

Trebla

Administrator
Administrator
Joined
Feb 16, 2005
Messages
8,401
Gender
Male
HSC
2006
sin 3x = sin 2x
Recall that the general solution of sin a = sin b is:
a = kπ + (-1)k.b (where k is integer valued)
Equivalently, general solution of sin a = c is:
a = kπ + (-1)k.sin-1c (where k is integer valued)

So:
3x = kπ + (-1)k.2x
=> kπ = x[3 - 2.(-1)k]
=> x = kπ/{3 - 2.(-1)k}
where k is integer valued

instead of doing all that expansion...
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top