y = (x<sup>2</sup> + 1) / e<sup>x</sup>
dy/dx = [e<sup>x</sup> * (2x) - (x<sup>2</sup> + 1) * e<sup>x</sup>] / (e<sup>x</sup>)<sup>2</sup>
= e<sup>x</sup>(2x - x<sup>2</sup> - 1) / e<sup>2x</sup>
= (2x - x<sup>2</sup> - 1) / e<sup>x</sup>
= -(x<sup>2</sup> - 2x + 1) / e<sup>x</sup>
= -(x - 1)<sup>2</sup> / e<sup>x</sup>
The only stationary point is located at x = 1, and everywhere else, dy/dx < 0, and so (1, 2 / e) is a horizontal POI.
d<sup>2</sup>y / dx<sup>2</sup> = [e<sup>x</sup> * -2(x - 1)<sup>1</sup> * 1 - -(x - 1)<sup>2</sup> * e<sup>x</sup>] / (e<sup>x</sup>)<sup>2</sup>
= e<sup>x</sup>(x - 1)[-2 + (x - 1)] / e<sup>2x</sup>
= (x - 1)(x - 3) / e<sup>x</sup>
So, possible inflexions at x = 1 and x = 3. Testing shows d<sup>2</sup>y/dx<sup>2</sup> changes sign around these values, so they are inflexions.
Note: It is clear from the graph that there must be two points of inflexion.