Hard Questions (2 Viewers)

leehuan

Well-Known Member
Joined
May 31, 2014
Messages
5,768
Gender
Male
HSC
2015
Yeh lol i was talking about the integral, the second question made my eyes glaze
The brutal way to do it is just to let u^2=tan(x), followed by another substitution and then the partial fractions is tedious.

But it's been asked quite a few times on the 2015 integration marathon, with a variety of answers.
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
I think the wording of the original post was the main reason for lots of posting of "joke" questions.

(Original post:
Tbh, i am just bored. Could someone post some very hard math problems.
thanks
)
 

Nailgun

Cole World
Joined
Jun 14, 2014
Messages
2,190
Gender
Male
HSC
2016
The brutal way to do it is just to let u^2=tan(x), followed by another substitution and then the partial fractions is tedious.

But it's been asked quite a few times on the 2015 integration marathon, with a variety of answers.
hmm
why can't you use reverse chain rule btw? (I know you can't but I don't understand why)
 

Nailgun

Cole World
Joined
Jun 14, 2014
Messages
2,190
Gender
Male
HSC
2016
Nah like y=(tanx)^1/2, so the integral is [2((tanx)^3/2)] /[ 3(secx)^2]
 

Paradoxica

-insert title here-
Joined
Jun 19, 2014
Messages
2,548
Location
Outside reality
Gender
Male
HSC
2016
Nah like y=(tanx)^1/2, so the integral is [2((tanx)^3/2)] /[ 3(secx)^2]
Where is the necessary factor of sec^2{x} ? Without the presence of sec^2{x}, an arbitrary function of tanx is most likely impossible to integrate by elementary means.
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
Nah like y=(tanx)^1/2, so the integral is [2((tanx)^3/2)] /[ 3(secx)^2]
The dividing by the derivative of tan(x) won't work because tan(x) isn't a linear function. We can only generally do this (divide by the derivative of the function) if that function is linear (ax+b (a non-zero)).
 

Nailgun

Cole World
Joined
Jun 14, 2014
Messages
2,190
Gender
Male
HSC
2016
The dividing by the derivative of tan(x) won't work because tan(x) isn't a linear function. We can only generally do this (divide by the derivative of the function) if that function is linear (ax+b (a non-zero)).
oh right that makes sense
i just realised it doesn't work (by trying) that it doesn't work with non-linear functions
i thought you could use it with something like (x^2+3)^3

thankies
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
Yeah. Well that's hard. But jokes aside, do you know that the Riemann Zeta function WAS actually examined in the HSC in 1975. So here is a not-so-hard question - HSC 1975 4 unit Q9i:



See if you can do it.
The Riemann zeta function was in the HSC syllabus before, right?
 

InteGrand

Well-Known Member
Joined
Dec 11, 2014
Messages
6,078
Gender
Male
HSC
N/A
I think the point is that convergence was in the syllabus before.
My Riemann zeta query was in reference to your "do you know that the Riemann Zeta function WAS actually examined in the HSC in 1975" comment. Anyway, I had a look back at buchanan's old post (http://community.boredofstudies.org/238/extracurricular-topics/102519/arc-length.html#post2220688) about old topics that have been removed, and it says that the Riemann zeta function was in the Level 1 (1966-1980) course.
 
Last edited:

Paradoxica

-insert title here-
Joined
Jun 19, 2014
Messages
2,548
Location
Outside reality
Gender
Male
HSC
2016
Yeah. Well that's hard. But jokes aside, do you know that the Riemann Zeta function WAS actually examined in the HSC in 1975? So here is a not-so-hard question - HSC 1975 4 unit Q9i:



See if you can do it.
The infinite sum is a first-order linear approximation of the following integral:



Two approximations are constructed such that they are definitively greater and lesser than the true value of the integral. Since the integral only converges for s>1, it follows that the sum only converges for s>1. QED.

This isn't a formal proof, strictly speaking, but I cbbs rn. I'll come back to patch it up later.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 2)

Top