Napoleon said:
A particle of mass 1kg moves in a straight line with velocity v against a resistance force equal to v[rt [1-v^2]]. the displacement, x, of the particle from a fixed origin O is initially ero and its velocity at that time is R.
show that x= arcsin [R[rt [1-v^2] - v[rt [1-R^2]]
The resistive force gives you the equation of motion which is:
acceleration = v(dv/dx) = -v√(1 - v<sup>2</sup>)
dv/dx = - √(1 - v<sup>2</sup>)
dx/dv = -1/√(1 - v<sup>2</sup>) then integrate w.r.t. v to get
x = cos<sup>-1</sup>v + c ... when x=0, v=R so c = -cos<sup>-1</sup>R
x = cos<sup>-1</sup>v - cos<sup>-1</sup>R then do the inverse trig thing
sinx = sin(A - B) where A = cos<sup>-1</sup>v and B = cos<sup>-1</sup>R
sinx = sinAcosB - cosAsinB = R√(1 - v<sup>2</sup>) - v√(1 - R<sup>2</sup>) by doing all the triangle stuff
∴ x = sin<sup>-1</sup>(R(√(1 - v<sup>2</sup>) - v√(1 - R<sup>2</sup>))