shady145 said:
the tangent at p, any point on a hyperbola, meets the directrix at T. show that PT subtends a right angle at the focus.
For the positive case P(x
1,y
1) for x > 0 and S(ae,0):
Equation of tangent at P (derive this)
xx
1 / a² - yy
1 / b² = 1
When x = a/e at the directrix
x
1 / ea - yy
1 / b² = 1
y = b²(x
1 - ea) / eay
1
T(a/e, b²(x
1 - ea) / eay
1)
m
PS = y
1 / (x
1 - ae)
m
ST = {b²(x
1 - ea) / eay
1} / (a/e - ae)
= b²(x
1 - ea) / (a²y
1 - a²e²y
1)
= a²(e² - 1)(x
1 - ae) / a²y
1(1 - e²)
= - (e² - 1)(x
1 - ae) / y
1(e² - 1)
= - (x
1 - ae) / y
1
m
PS x m
ST = [y
1 / (x
1 - ae)]. [- (x
1 - ae) / y
1] = -1
.: PT subtends a right angle at the focus
If P(x
1,y
1) for x < 0 and S(- ae,0) instead, then by symmetry the result should also hold for this case.