RealiseNothing
what is that?It is Cowpea
Re: HSC 2014 4U Marathon
(a+b-c)(a+c-b)(b+c-a)} \leq a^2 + b^2 + c^2)
Expanding the LHS basically gives the result.
(a+b-c)(a+c-b)(b+c-a) = 2(a^2b^2+b^2c^2+c^2a^2) - (a^4+b^4+c^4))
^2)
	
		
			
		
		
	
								The problem is essentially showing that:It hatttesss you!
(s-b)(s-c)} \ $where$ \ s= \frac{1}{2} (a+b+c) \\ \\ $Show that$ \ \ A \leq \frac{a^2+b^2+c^2}{4} )
Expanding the LHS basically gives the result.
 
				
 
 
		 
 
		 
 
		 
	 
 
		