Induction Question (1 Viewer)

haboozin

Do you uhh.. Yahoo?
Joined
Aug 3, 2004
Messages
708
Gender
Male
HSC
2005
i. use mathematical induction to show that ln(n!) > n for positive integers n>=6

ok easy since ln7> 1 (dont need to answer this question for me)

ii. hense show that 1/n! < 1/e^n when n>=6

ok easy just rearange i (dont need to answer this either)


iii. Please answer this:
hence prove:
1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! + 1/8! ... < 103/60 + 1/e^5(e - 1)
 
Last edited:

KFunk

Psychic refugee
Joined
Sep 19, 2004
Messages
3,323
Location
Sydney
Gender
Male
HSC
2005
haboozin said:
i. use mathematical induction to show that ln(n!) > n for positive integers n>=6

ok easy since ln7> 1 (dont need to answer this question for me)

ii. hense show that 1/n! < 1/e^n when n>=6

ok easy just rearange i (dont need to answer this either)


iii. Please answer this:
hence prove:
1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! + 1/8! ... < 103/60 + 1/e^5(e - 1)
1/n! < 1/e<sup>n</sup> when n &ge; 6 so,

1/6! + 1/7! + ... < 1/e<sup>6</sup> + 1/e<sup>7</sup> + ... where the right hand site is geometric.

as n --> &infin;
1/e<sup>6</sup> + 1/e<sup>7</sup> + ... 1/e<sup>n</sup> = (1/e<sup>6</sup>)/(1 - 1/e)
= 1/e<sup>5</sup>(e-1)

hence

1/6! + 1/7! + ... < 1/e<sup>5</sup>(e-1)

(then add 1/1! + 1/2! + ... + 1/5! to both sides)

1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! + 1/7! + 1/8! ... < 103/60 + 1/e^5(e - 1)

(since 1/1! + 1/2! + ... + 1/5! = 103/60)
 

ishq

brown?
Joined
Nov 12, 2004
Messages
932
Gender
Female
HSC
2005
From part (ii), we have -
1/n! < 1/e^n. [n >=6]

Therefore, in part (iii)

LHS
= 1/1! +1/2! + 1/3! +.... + 1/8! ...
< 1/1! + 1/2! + 1/3! + 1/4! + 1/5! + 1/e^6 + 1/e^7 + 1/e^8 ... (Using part (ii) )
< (add the first five) + 1/e^6 [ 1 + 1/e +1/e^2 + 1/e^3...] (Which is a geometic series)
< 103/60 + 1/e^6 [1/(1-1/e)] (Using Sum to Infinity)
< 103/60 + 1/e^5(e-1)
RHS


EDIT: Too Late...:)
 
Last edited:

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top