MedVision ad

Integrals with fractional powers of trig (1 Viewer)

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
how would you do the indefinite integral of

(sinx)^5/2 * cosx

so basically the integral of sinx to the power of 5/2 multiplied by cosx. Sorry I don't know how to use that fancy maths thingy that people on here seem to use on here yet. Thanks in advance.
 

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,615
Gender
Male
HSC
2015


Its just reverse chain rule, however you could also use the substitution u=sinx, and solve it accordingly
 

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
Thanks man, just another one, how would you do the indefinite integral of (cosx)^2 / (sinx)^4

Is there a way apart from T-formula?
 

Ekman

Well-Known Member
Joined
Oct 23, 2014
Messages
1,615
Gender
Male
HSC
2015
Thanks man, just another one, how would you do the indefinite integral of (cosx)^2 / (sinx)^4

Is there a way apart from T-formula?




You can let u=cotx or just use reverse chain rule again since:
 

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
Another unrelated question.. thought I may as well do it here instead of adding another thread

Consider the curve y=(x^5)-10(x^4)+22(x^3)+32(x^2)-20x+20. Find the equation of the line which intersects the curve at (-2,-180) and is a tangent to the curve at two other points.
 
Last edited:

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,650
Gender
Undisclosed
HSC
2015
Another unrelated question.. thought I may as well do it here instead of adding another thread

If k>27/4, prove that (x^3)-kx+k=0 has three real roots

and

Consider the curve y=(x^5)-10(x^4)+22(x^3)+32(x^2)-20x+20. Find the equation of the line which intersects the curve at (-2,-180) and is a tangent to the curve at two other points.
For the first question ill get you started :









Ill look at the second one gimme a sec
 

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,650
Gender
Undisclosed
HSC
2015
Consider the curve y=(x^5)-10(x^4)+22(x^3)+32(x^2)-20x+20. Find the equation of the line which intersects the curve at (-2,-180) and is a tangent to the curve at two other points .
This isn't possible do you mean at one other point?
 

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
This isn't possible do you mean at one other point?
Nup, two others points...as a matter of fact, when I tried to do this question I got an unreal solution as one of the x values for the tangent so I was also thinking it is impossible, but someone else has done it. (They won't show me how though :evilfire:)

FYI I got the first question so that can be ignored
 

Drsoccerball

Well-Known Member
Joined
May 28, 2014
Messages
3,650
Gender
Undisclosed
HSC
2015
Nup, two others points...as a matter of fact, when I tried to do this question I got an unreal solution as one of the x values for the tangent so I was also thinking it is impossible, but someone else has done it. (They won't show me how though :evilfire:)

FYI I got the first question so that can be ignored
Using my way ? or some other way
And i sketched the graph theres no way you can possibly have an intersection and two other tangents one i understand from the sketch of it but two i dont know..
 

FrankXie

Active Member
Joined
Oct 17, 2014
Messages
330
Location
Parramatta, NSW
Gender
Male
HSC
N/A
Uni Grad
2004
Another unrelated question.. thought I may as well do it here instead of adding another thread

Consider the curve y=(x^5)-10(x^4)+22(x^3)+32(x^2)-20x+20. Find the equation of the line which intersects the curve at (-2,-180) and is a tangent to the curve at two other points.
hint, this is equivalent to that the quintic equation has one root x=-2 and two double roots, where y=ax+b is the mentioned tangent.
 

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
Thanks guys, I went back and found I did another arithmetic error of 10+2=8 :mad2: giving me unreal roots lol... and I got the same as you frankxie
 

mrpotatoed

Active Member
Joined
Nov 16, 2014
Messages
195
Gender
Male
HSC
2015
Sorry... got another integrals question but don't want to create a new thread...

If we have an equation such as (x^2-1)/(x^2-5x+6), the answers do +(-5x+7)-(-5x+7), so that you have two integrals, the first cancels out to 1, and the second has a degree of 1 while the denominator has a degree of 2. They use partial fractions, but I used an addition / subtraction method the same as what you would have to do if the denominator is irrational. However I end up with a different answer. I was just curious if this is because this method does not work when the denominator can be factorised, or if the constant is just different or something.
 

Users Who Are Viewing This Thread (Users: 0, Guests: 1)

Top