Part One: I<sub>n</sub> = int (from 0 to 1) x(1 - x<sup>3</sup>)<sup>n</sup> dx, for n => 0, n an integer.
Show that I<sub>n</sub> = [3n / (2 + 3n)] * I<sub>n-1</sub> for n => 1
I<sub>n</sub> = int (from 0 to 1) x(1 - x<sup>3</sup>)<sup>n</sup> dx, for integers n => 0
= int (from 0 to 1) (1 - x<sup>3</sup>)<sup>n</sup> d(x<sup>2</sup> / 2)
= [(1 - x<sup>3</sup>)<sup>n</sup>x<sup>2</sup> / 2] (from 0 to 1) - int (from 0 to 1) x<sup>2</sup> / 2 d(1 - x<sup>3</sup>)<sup>n</sup>
= [0 - 0] - int (from 0 to 1) (x<sup>2</sup> / 2) * n(1 - x<sup>3</sup>)<sup>n-1</sup> * -3x<sup>2</sup> dx, for integers n => 1
= (3n / 2) * int (from 0 to 1) x<sup>4</sup>(1 - x<sup>3</sup>)<sup>n-1</sup> dx
= -1 * (3n / 2) * int (from 0 to 1) x(1 - x<sup>3</sup> - 1)(1 - x<sup>3</sup>)<sup>n-1</sup> dx
= -1 * (3n / 2) * int (from 0 to 1) x(1 - x<sup>3</sup>)(1 - x<sup>3</sup>)<sup>n-1</sup> - x(1 - x<sup>3</sup>)<sup>n-1</sup> dx
= -1 * (3n / 2) * int (from 0 to 1) x(1 - x<sup>3</sup>)<sup>n</sup> dx - -1 * (3n / 2) * int (from 0 to 1) x(1 - x<sup>3</sup>)<sup>n-1</sup> dx
So, we have I<sub>n</sub> = -1 * (3n / 2) * I<sub>n</sub> + (3n / 2) * I<sub>n-1</sub>
(1 + 3n / 2)I<sub>n</sub> = (3n / 2)I<sub>n-1</sub>
(2 + 3n)I<sub>n</sub> = 3n * I<sub>n-1</sub>
So, I<sub>n</sub> = [3n / (2 + 3n)] * I<sub>n-1</sub>, for integers n => 1, as required.
Part Two: Find I<sub>n</sub> in terms of n, for n=> 0
First, note that I<sub>0</sub> = int (from 0 to 1) x(1 - x<sup>3</sup>)<sup>0</sup> dx = int (from 0 to 1) x dx
= [x<sup>2</sup> / 2] (from 0 to 1)
= (1 / 2) - 0
= 1 / 2
Now, I<sub>n</sub> = [3n / (2 + 3n)] * I<sub>n-1</sub>
= [3n / (3n + 2)] * [3(n - 1) / (2 + 3(n - 1))] * I<sub>n-2</sub>
= [3n / (3n + 2)] * [3(n - 1) / (3n - 1)] * [3(n - 2) / (2 + 3(n - 2))]I<sub>n-3</sub>
= [3n / (3n + 2)] * [3(n - 1) / (3n - 1)] * [3(n - 2) / (3n - 4)] * [3(n - 3) / (2 + 3(n - 3))]I<sub>n-4</sub>
= [3n / (3n + 2)] * [3(n - 1) / (3n - 1)] * [3(n - 2) / (3n - 4)] * [3(n - 3) / (3n - 7)] * ... * I<sub>1</sub>
= [3n / (3n + 2)] * [3(n - 1) / (3n - 1)] * [3(n - 2) / (3n - 4)] * [3(n - 3) / (3n - 7)] * ... * (3 / 5) * I<sub>0</sub>
= [3n / (3n + 2)] * [3(n - 1) / (3n - 1)] * [3(n - 2) / (3n - 4)] * [3(n - 3) / (3n - 7)] * ... * (3 / 5) * (1 / 2)
= [3n * 3(n - 1) * 3(n - 2) * ... * 3] / [(3n + 2) * (3n - 1) * (3n - 4) * ... * 5 * 2]
= [3<sup>n</sup> * n * (n - 1) * (n - 2) * ... * 1] / [(3n + 2) * (3n - 1) * (3n - 4) * ... * 5 * 2]
= 3<sup>n</sup>n! / [(3n + 2) * (3n - 1) * (3n - 4) * ... * 5 * 2]
Can anyone see a nice way to simplify the expression 2 * 5 * 8 * ... * (3n + 2)?